
Y: A Successor to the X Window System

Mark Thomas
<mbt99@doc.ic.ac.uk>

Project Supervisor:

D. Rückert
<dr@doc.ic.ac.uk>

Second Marker:

E. Lupu
<ecl1@doc.ic.ac.uk>

June 18, 2003

ii

Abstract

UNIX desktop environments are a mess. The proliferation of incompatible and
inconsistent user interface toolkits is now the primary factor in the failure of
enterprises to adopt UNIX as a desktop solution.

This report documents the creation of a comprehensive, elegant framework for
a complete windowing system, including a standardised graphical user interface
toolkit. ‘Y’ addresses many of the problems associated with current systems,
whilst keeping and improving on their best features.

An initial implementation, which supports simple applications like a terminal
emulator, a clock and a calculator, is provided.

iii

iv

Acknowledgements

Thanks to Daniel Rückert for supervising the project and for his help and advice
regarding it.

Thanks to David McBride for his assistance with setting up my project machine
and providing me with an ATI Radeon for it. Thanks to Philip Willoughby for
his knowledge of the POSIX standard and help with the GNU Autotools and
some of the more obscure libc functions. Thanks to Andrew Suffield for his help
with the GNU Autotools and Arch.

Thanks to Nick Maynard and Karl O’Keeffe for discussions on window system
and GUI design. Thanks to Tim Southerwood for discussions about possible
features of Y. Thanks to Duncan White for discussions about the virtues of X.

All company and product names are trademarks and/or registered trademarks
of their respective owners.

v

vi

Contents

1 Introduction 1

2 Background 5
2.1 A Brief History of Windowing Systems 5
2.2 The State of the Art . 7

3 Server Overview 13
3.1 Object Orientation . 14
3.2 Standard Widgets . 15
3.3 Buffer Arrangement . 16

4 Object Model 19
4.1 Classes . 20
4.2 Objects . 20
4.3 Instantiation and Destruction . 20
4.4 Methods . 20
4.5 Properties . 21
4.6 Signals . 21
4.7 Messages . 21
4.8 Message Format . 21
4.9 Stream Implementation . 23

5 Widgets and Themes 25
5.1 Widget . 25
5.2 Desktop . 26
5.3 Window . 27
5.4 Label . 27
5.5 Canvas . 27
5.6 Button . 28
5.7 Checkbox . 28
5.8 Console . 28
5.9 Grid Layout . 29

6 Graphics Rendering 31
6.1 Painters . 32
6.2 Viewports . 33
6.3 Fonts . 33
6.4 Renderers . 34

vii

viii CONTENTS

7 Input 35
7.1 Pointing Devices . 35
7.2 Keyboards . 36
7.3 Keymaps . 37

8 Miscellanea 39
8.1 Abstract Data Types . 39
8.2 Configuration . 39
8.3 Special Functions . 40

9 Clients 41
9.1 Client Library Specifications . 41
9.2 The C++ Client Library . 42
9.3 Example Applications . 42

10 Conclusions 45
10.1 Evaluation . 45
10.2 Testing . 47
10.3 Future Work . 48

A Source Code 53
A.1 Obtaining the Source . 53
A.2 Build Pre-requisites . 53
A.3 Compiling and Running . 53

B Terminology 55
B.1 Network Transparency . 55
B.2 Remote Desktop Access . 55
B.3 Objects, Widgets and Gadgets 56

C LibYc++ API Documentation 57

Chapter 1

Introduction

The X Window System [23] is the de facto standard graphical user interface
(GUI) system on UNIX and UNIX-like platforms such as GNU/Linux. However,
as X approaches its 20th year, signs of its age are beginning to show. Commonly
cited problems with X include:

• X is too slow. This is commonly dismissed as nonsense due to the
high throughput that tweaked implementations of X have been proven to
achieve1. What this does not take into account is that in the general case
it is latency that matters more than throughput [6]. Unfortunately, the
design of X does not facilitate low latency.

• X places too much burden on the programmer. The X protocol,
and its corresponding library Xlib, provide very low level operations. As
a result, programming directly with Xlib is very difficult. For this reason,
programmers usually choose to use a toolkit library.

• X has no standard toolkit. In 1984, before GUIs were common-place,
not providing a standard toolkit was the best way to achieve enough flex-
ibility to create all the applications that had not yet been conceived.
However, these days, with the benefit of the last two decades of expe-
rience [16, 25], it is much better to provide a complete set of standard
user interface components that look and behave consistently.

Aside from the user interface inconsistency, the lack of standard compo-
nents also makes internationalisation difficult, particularly for languages
which require a complex input method.

• X is reaching the end of its life span. XFree86, the most popular
version of X that is in use, is now over 10 years old. Over the years it
has been extended and modified many times, to the point where it is an
incoherent mess.

Although the X protocol supports extensions very well, some of the latest
extensions have begun to interfere with each other. For example, when

1For example, 265,000 lines per second, each 100 pixels in length, determined using the
x11perf program that comes with XFree86 [29], on an Intel Pentium 4 1.8 GHz CPU with an
ATI Radeon VE graphics accelerator, using XFree86’s radeon driver.

1

2 CHAPTER 1. INTRODUCTION

Xinerama (the extension which allows X desktops to span multiple mon-
itors) was first released, it broke XVideo (the extension which allows X
to use hardware accelerated overlays for video play back). The ‘fix’ for
this was to allow XVideo to only work on the primary display. The latest
extension, XRandR (Rotate and Resize), is also known to break many
older applications which assume that the screen size will never change.

Further, the internal design of X itself is outdated. Even adding a sim-
ple feature, such as translucent windows, requires large changes to the
server [17]. Because of the requirement to be backwardly compatible,
these features must be implemented for everything that X works on, in-
cluding two-colour displays.

• X is too complex. The years of extension and modification of the X
protocol itself have left the unfortunate legacy that X is too complex.
Additional protocols like ICCCM which have been layered above X in an
attempt to solve problems have caused additional problems when it comes
to understanding what is actually happening [24]. The xine media player
for Linux has to probe which window manager is currently running and
guess at the best way to switch to full screen. The developers gave up
trying to find a consistent way to switch off the screen saver, and switched
to the ugly hack of simulating the left shift key being pressed once every
thirty seconds [7].

However, X has some useful features which any worthy replacement must
also include:

• Network Transparency. X allows applications which are not running
on the same machine to connect to the display (for a comparison between
this and remote desktop access, see appendix B). This is a useful feature,
particularly for administrators of servers that do not have displays of their
own.

• Modularity and Extensibility. XFree86 is modular (in so far as mod-
ules can be loaded at start up), and the X protocol itself is extensible.
This has allowed X to continue to be used for many years after it was first
released.

Clearly a full replacement of an entire graphical user interface system is far
beyond the scope of a fourth year undergraduate individual project. The aim
is instead to create a suitable foundation upon which a replacement can easily
be built.

In particular, ‘Y’ provides:

• A complete object model suitable for graphical user interface components.
Additional loadable modules may provide additional object classes, and
the existence of an object class may be interrogated by clients at run-time.

• A message passing system for accessing these objects on systems that
support some form of message passing, and a socket system for passing
messages over networks, or on systems that support fast local sockets.

• The beginnings of a set of widgets with appropriate input event processing
that can be used to easily and quickly build consistent applications.

3

Figure 1.1: Current Implementation of Y

• A modular graphics rendering system that provides support for rendering
the widgets in a variety of themes to a variety of graphics hardware. Unlike
X, modules are unloadable and reloadable, which allows the display driver
to be changed at run-time, for example to upgrade video card drivers, or
to switch to a remote desktop server.

• A client library for writing Y applications in C++. This is a reference
implementation from which libraries can be built for almost any other
language.

• Some sample applications, most notably a clock, a simple calculator and
a terminal emulator.

In chapter 2 the history of windowing systems and their corresponding graph-
ical user interfaces is presented, followed by a description of the state of the art.

In chapter 3 the possible designs for a new windowing system are analysed,
and a suitable design for Y is selected. This is followed up with a detailed design
of the components in chapters 4 to 8. Details about how clients that use this
windowing system are provided in chapter 9.

Finally, in chapter 10, the project is evaluated and tested, conclusions are
drawn, and some examples of the many extensions to this project are listed.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 A Brief History of Windowing Systems

In 1945, Dr. Vannevar Bush [4] theorised about a future device, which he
called a “memex”, ‘in which an individual stores all his books, records, and
communications, and which is mechanised so that it may be consulted with
exceeding speed and flexibility.’ Bush’s memex would allow people to store
graphical images of documents, browse them, and link them together.

This paper inspired Douglas Engelbart between 1962 and 1968 to write his
NLS (oNLine System), which pioneered the use of a mouse (which he called an
X-Y Position Indicator), and a keyboard to store, edit and hyperlink documents
together. Part of NLS was the “windowed interface” that provided the views
onto the documents.

Further, in 1963, MIT graduate student Ivan Sutherland created Sketchpad,
a system which allowed the manipulation of graphical objects on a CRT screen.
This idea was further adapted into the Pygmalion [5] programming system and
part of the Smalltalk programming language.

Still, up to this point graphical user interfaces were primarily limited to a
single application. The Alto system, which developed into the Star system, from
Xerox’s Palo Alto Research Centre was the first to tie together all these ideas
into something that resembles what we would now expect of a graphical user
interface.

In December 1979, in exchange for some of Apple’s stock, XEROX allowed
Steve Jobs, Steve Wozniak and a group of engineers from Apple to tour their
research facility, take notes, and implement some of their ideas. Apple then
went on to build the Apple Lisa, and from there the graphical user interface
took off.

In 1983, Apple released their first Macintosh computer. The “Mac” interface
is arguably the basis of all popular graphical user interfaces. The Macintosh
interface had overlapping windows, whose contents could be scrolled around;
icons to represent files and programs; and pull-down menus from the top of the
screen.

The next notable windowing system to be released was that of Commodore’s
Amiga. The Amiga windowing system, Intuition, in addition to the features of
the Apple system, also provided a colour display, proportional scroll-bars, and

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: The XEROX Star User Interface

multimedia capabilities. It also had the concept of different virtual ‘screens’
upon which work could be placed. Switching between screens was achieved by
clicking on an icon in the top right-hand corner of the screen.

In the mid 1980s, the X window system was developed at MIT. The major
features of X were its network transparency and its extensibility. The network
transparency allowed it to be used in main-frame style environments, where a
large, powerful machine would run applications for many people, and a smaller,
cheaper terminals connected to the mainframe by a fast network would run
an X server for the applications to display their results on. Also, it is X’s
extensibility that has meant X is still being used today. A typical installation
of X on a machine running GNU/Linux uses around 26 of these extensions.

Meanwhile, Sun Microsystems developed their own windowing system, called
NeWS. NeWS was also network transparent, but was based on a more powerful
Display Postscript language. However, Sun’s unwillingness to share NeWS led
to the adoption of X as the de facto standard.

Microsoft were fairly late entering the Graphical User Interface market,
partly due to IBM’s belief that GUIs were a fad that would pass. Still, de-
spite announcing Microsoft Windows in 1983, it did not arrive until 1985, and
was missing several of the features promised, including the fundamental ability
to overlap windows.

For many years Microsoft lagged behind in development, and generally
copied the ideas of the larger players, particularly Apple. However, it gained
significantly in popularity as the cheap IBM PC clones proliferated.

MacOS X’s windowing system, which is made up of the Quartz rendering
engine and the Aqua interface, is the most recent windowing system. It added
many modern features, such as anti-aliasing and alpha blending.

2.2. THE STATE OF THE ART 7

2.2 The State of the Art

The X Window System

The X window system is a very low level windowing system. It essentially
provides overlapping windows, which are generally rectangular, although the
XSHAPE extension allows them to be any shape.

X provides no standard GUI toolkit. Although the X Athena Widget set
were commonly used in the early days of X, they were not sufficiently powerful
for most applications’ requirements. As a result Motif, GTK, Qt and a host
of other incompatible widget sets were created, which has led to X becoming a
user-interface nightmare. Some companies will not port their applications to X
due to the lack of standard toolkit. Often GNU/Linux developers will write a
command-line tool instead of a GUI tool for the same reason.

Figure 2.2: Screenshots of X using (top) GNOME 1.4 and (bottom) KDE 3.1

8 CHAPTER 2. BACKGROUND

X’s lack of standard GUI has led several groups of people to try and write
coherent systems on top of X. The most notable ones are GNOME [12] and
KDE [15], and these are illustrated in figure 2.2. Unfortunately, these all have
one major problem: applications from one are not consistent with applications
from another, nor the myriad of other X applications that people often use.
Figure 2.3 shows several of the commonly used applications that have completely
different interfaces, both in their look and behaviour.

Figure 2.3: Various X applications and their differing interfaces

Windows are always opaque. Windows are unbuffered, which means that
all drawing operations are sent directly to the screen’s framebuffer. This means
that they must all be clipped to the window’s viewable area (which can be
computationally expensive for complex graphics rendered into complex shapes),
and whenever a window is partly uncovered, the application that owns that
window must be contacted to repaint its contents within that region.

X is centred around a set of protocol specifications, most prominently the X
protocol and the ICCCM (Ice Cubed) protocol. The X protocol is for applica-
tions and the window manager to communicate with the X server. The ICCCM
protocol is for the applications to talk to the window manager. Recently, some
desktop environments have begun adding extra protocols to allow applications
to talk to each other, notably KDE’s DCOP, and GNOME’s use of CORBA.

X is very extensible, as extensions can be added to the protocol with relative
ease. This is helped by the fact that most X implementations, particularly
XFree86, are modular. Modules of extra code, for example device drivers, can
be loaded into the server at start-up. The X internals provide sufficient hooks
to allow modules to do useful work.

The main advantage of X over other windowing systems is its network trans-
parency, which allows applications that are running on one host to directly use
the display on another host without needing access to a display on their local

2.2. THE STATE OF THE ART 9

host. This is invaluable for server administrators, who generally do not want
their servers wasting processor time and memory on a windowing system.

Figure 2.4: Screenshot of Apple’s MacOS X and its Aqua widget toolkit

Apple MacOS X

Apple’s MacOS X is the tenth and most recent revision of their operating system.
It uses their Quartz rendering engine, and the Aqua user interface to render
graphics. An example of the MacOS X interface is given in figure 2.4.

The Aqua interface is generally consistent. One of Apple’s selling points
for the Mac interface is that they have always gone for consistency. Gener-
ally they have succeeded; for example it is often said that “Mac users know
that Command-S is always ‘save’.” Apple publish very detailed user interface
guidelines [1], which all applications developers should follow.

Unfortunately, these guidelines do not cover every case, and are not always
followed, which results in some inconsistency in the implementation.

Quartz allows arbitrary transformations to be made to drawing operations,
and supports the rendering of PDF data to the screen natively. It also has
support for anti-aliasing and alpha blending (transparency). This results in the
MacOS interface looking very aesthetically pleasing. It also uses animation to
help the user understand what is going on.

Although bindings exist for Java and other languages, the main language
interface, “Cocoa”, is only available in Objective C. This makes rapid applica-
tion development using simpler languages like Perl or Python impossible, and
reduces the number of developers that can work on MacOS X applications.

10 CHAPTER 2. BACKGROUND

Figure 2.5: Screenshot of Microsoft’s Windows XP “Luna” interface.

Microsoft Windows

Microsoft Windows XP is the most recent operating system from Microsoft. It
features a brand new interface, which is themable. The standard theme is called
“Luna”, which is illustrated in figure 2.5.

Windows XP has many of the features of both X and MacOS listed above,
though it has no outstanding features of its own.

A common criticism of Windows XP is its over-use of eye candy. Rather
than using animation to explain to the user what is going on, it is sprinkled
throughout the system for no good reason. Menus ‘whoosh’ open and bubbles
pop up from window gadgets and system tray icons. Although these often are
suitable for novice users, intermediate and expert users find them patronising
and annoying as they distract them from their work.

Fresco

Fresco [11] also aims to be a successor to X, however their architecture is radi-
cally different. Fresco requires the use of CORBA as the communication prim-
itive, which is intended to make network transparency and language indepen-
dence easy.

In practice, Fresco has received little support. Most developers balk at
the use of CORBA because its IDL specifications are arcane, and its APIs are
difficult to use in any language.

Fresco also has a reputation of being slow. This may be due to it using
InterViews as its GUI component system, or because it uses CORBA for com-
munication. Most CORBA implementations are synchronous, which requires a
round trip for every operation performed. Though this is partly alleviated by
the high-level nature of the protocol, it will still cause problems for applications

2.2. THE STATE OF THE ART 11

that wish to draw to canvases. A graphics application that wants to render a
vector-based image with 1000 components will require thousands of round trips
to the server. One of the reasons X was an improvement over the other contem-
porary UNIX windowing systems of the early 1980’s was its asynchronicity [23].

Despite seven years of development, Fresco has yet to achieve anything more
than rudimentary applications and a rough GUI.

DirectFB

DirectFB [9] is an abstraction layer on top of the Linux kernel framebuffer
device, and provides rudimentary windowing system functions like those of X.
DirectFB was designed for use on Embedded Linux devices and that is where
it excels.

Recently, people have begun attempting to use it as a replacement for X.
Other than being cleaner in design, DirectFB provides no advantages over X,
and does away with its network transparency and several other nice features.
DirectFB does not even provide multiple client support, and in order to simulate
this, processes engage in co-operative multitasking, similar to that used by Mi-
crosoft Windows versions before 95. DirectFB still doesn’t provide a standard
GUI, though most DirectFB applications use GTK.

PicoGUI

PicoGUI [19] is also designed for embedded devices, though it goes several steps
further than DirectFB. It uses a client/server model like X, but uses a bespoke,
very light-weight protocol. It communicates in terms of server widgets which
are identified by unique integers.

The PicoGUI developers have very recently decided to extend PicoGUI to
become a replacement for X similar to Y. Where this will go remains to be seen.

12 CHAPTER 2. BACKGROUND

Chapter 3

Server Overview

The design of the Y server is the most important part of the project, as it is this
that dictates how clients will interface to it. Ideally the server should provide:

• An advanced object system. In addition to methods, fields, inheri-
tance and overriding, the object system should provide facilities for ad-
vanced object orientation principles such as get and set modifiers on fields
and loosely coupled signals. These features can then be implemented
directly in client languages that support them, and indirectly in other
languages, such as C++.

• Language Independence. A windowing system should not dictate the
languages a client program should be written in. In order to allow many
applications for Y to be developed, and to allow programs to be written in
future languages, Y should make it easy for many languages to interface
to it.

• Various levels of access. Different languages and different environments
provide different communication primitives. High level object-based lan-
guages might best interface with Y at the object level, utilising their own
object communication system. At a lower level, systems that provide
fast message passing should be able to use this as their primary commu-
nications primitive. Finally, it should be possible to communicate with
the server using socket connections, as this is the level at which network
transparent applications will be able to communicate with the server.

• Low dependency on the clients’ capabilities. Unlike X, where a lot
of the computation is pushed on to the client, the Y server will be more
“intelligent”, and will be less dependent on the client. It should therefore
be unnecessary for the client to implement “refresh” handlers that simply
re-send what they have already sent.

• Modularity and extensibility. Using a plug-in system similar to that
of XMMS [30], it should be possible to dynamically add code to the Y
server. Ideally, modules should be unloadable and reloadable, so it is
possible to switch from, say, one video driver to another on the fly. There
should be reasonable hooks into the main server so modules can add real
functionality to the server.

13

14 CHAPTER 3. SERVER OVERVIEW

• Multiple monitor support. It should be possible to stretch the Y
desktop across multiple monitors in a way that is transparent to client
applications. Also, there should be support for multiple monitors display-
ing the same output, or partially overlapped output. It should also be
possible for one monitor to follow the mouse as it navigates across a larger
desktop area.

• Support for Hardware Acceleration. Whilst I do not expect the
initial implementation to have any form of hardware acceleration, Y should
be designed with it in mind. It should be easy for hardware vendors and
other third parties to write a video driver for a particular piece of hardware
and have it integrated with the server. The API for video drivers should
be as stable as possible so that old device drivers do not have to be heavily
maintained.

Object

Signal

Property

Method Class

Desktop

Window

Label

Button
Widget

Client

Canvas

Console

Checkbox

GridLayout

Pointer

Keyboard

Keymap

ScreenViewport

VideoDriver

Renderer

drivers/input

drivers/video

drivers/ipc

Message

windowmanager

theme

Objects

Widgets

*

*

*

Clients

. . .

Rendering Input

*

Figure 3.1: The Design of the Y Server

The design for Y is presented in figure 3.1. These components will be dis-
cussed further below, and in the following chapters.

3.1 Object Orientation

The object model for Y must be able to interface to many languages over sev-
eral different communication channels. For this reason, it will be necessary to
implement the object orientation internally. While it is tempting to use C++
as the internal language, there are several problems with this approach.

3.2. STANDARD WIDGETS 15

First, in order to provide remote access over simple communication channels,
such as those based on message passing, it will be necessary for each class
to provide a virtual table of method-name to function pointer mappings, for
example:

canvasTable = {
{ "drawLine", addr_of_canvas_DrawLine_function },
{ "drawRectangle", addr_of_canvas_DrawRectangle_function },
...

};

To invoke a method, the interprocess-communication layer will search this
table (if the table is kept sorted, then a binary search can be employed for
O(log2 n) look-up time), find the appropriate function pointer, and call it on
the object that the call pertains to.

Unfortunately, this is not possible to express within the constraints of the
C++ type system: pointers to members cannot be subsumed under the type of
their receiver [27], that is a member pointer ‘&Canvas::drawLine’ which is of
type ‘void Canvas::* (...)’ cannot be safely converted to a pointer of type
‘void Object::* (...)’ even though ‘Canvas’ inherits from ‘Object’. This
restriction only applies to receiver types; function pointers can be subsumed
under the basis of their return or argument types.

Second, interfacing modules to C++ is difficult. This is due to how C++ is
based on C. C++ identifiers are ‘mangled’ into C identifiers in order for classes
to have the same functions, and to allow polymorphism. For example, a method
with the C++ signature ‘void Canvas::drawLine (int, int, int, int)’ might
be mangled to ‘_ZN6Canvas8drawLineEiiii’. This is not helped by the fact that
the mangling format depends on which version of which compiler the module is
compiled with.

Third, C++ does not provide some of the object orientation features that
are desirable for the implementation of a window system. It does not provide
get and set modifiers on fields, and it does not provide a loosely coupled event
signalling system. Both of these can be implemented using large numbers of
template classes, but this causes code bloat as new versions of the same class
definition have to be created for each concrete type that the template is used
for.

For these reasons, it is better to implement the desired features directly.
The Y server will therefore be written in C. Modules can then be written in any
language that can compile to a C-compatible shared object, and client libraries
can be written in any language at all, provided that an interface layer is created
for that language.

3.2 Standard Widgets

Y should eventually implement the large number of standard widgets that exist
in almost every toolkit. Though this will not be necessary for the project, as a
few widgets will suffice as a proof of concept.

Y should make it easy for widgets to be added to the server, and for clients
to cleanly find out whether a widget is available. This will allow more complex

16 CHAPTER 3. SERVER OVERVIEW

applications to determine whether they should use a simpler widget, or perhaps
even implement the widget on the client-side using a canvas on the server.

Finally, widgets should be themable, so that users can select the look and
feel they desire. The theme should be provided in such a way that new widgets
can leverage existing component looks to ensure that they fit within the theme.

3.3 Buffer Arrangement

One of the characteristics of a windowing system is how it buffers widgets.
Widget buffering is when the on-screen representation of the widget is stored in
an off-screen buffer. Painting the widget from its abstract representation and
rendering it to the screen are thus separated, which means complex widgets
can be rendered quickly several times if they do not change. They can even be
moved, covered and revealed without requiring a repaint. Buffering also enables
one of the latest improvements in user interaction: alpha blending [20]. This
allows widgets to appear partially transparent, which has great advantages in
the efficient presentation of large amounts of information [31, 13]

The chief disadvantage of buffering is the amount of memory it requires. If
we are to buffer every widget, as shown in figure 3.2(c), complex applications will
quickly exceed the available memory of an average machine. It is for this reason
that older windowing systems such as X do not buffer any of their windows, as
in figure 3.2(a).

With the recent increases of computer memory, however, we can afford to
move to the more desirable “semi-buffering” model, as shown in figure 3.2(b).
In this model top-level widgets, such as windows and pop-up menus are given
their own buffers. This means moving, covering and uncovering windows that
are unchanging will not require a repaint of the window and its contents. Fur-
ther, widgets which are reliant upon the client for their exact contents, such as
canvases, can also be buffered so that they do not require repainting whenever
some other part of the window changes.

All other widgets paint themselves on to their container’s buffer. This leads
to a paint-render cycle, where all the widgets that have changed are painted
on to the appropriate buffer, then all the buffers are rendered on to the frame-
buffer.

3.3. BUFFER ARRANGEMENT 17

Desktop

Window Window

Button Label

Widgets

ScreenFramebuffer
to hardware

draw onto

Clients

Buffers

(a)

Desktop

Window Window

Button Label

Widgets

ScreenFramebuffer
to hardware

blend down

draw onto

Clients

Buffers

(b)

Desktop

Window Window

Button Label

Widgets

ScreenFramebuffer
to hardware

blend down

draw onto

Clients

Buffers

(c)

Figure 3.2: Various Ways of Buffering Widgets

18 CHAPTER 3. SERVER OVERVIEW

Chapter 4

Object Model

The Y server will require an object model that includes inheritance, method
calls, overriding in sub-classes, and properties with get and set modifiers. It
is also necessary for objects to be accessible remotely, and there should be no
burden on the remote clients to maintain binary compatibility, that is there
should be no ‘magic’ offsets to properties or methods.

Clients should also be able to subscribe to signals that can be emitted by
objects, as these will form the basis of the event system.

In Y, both classes and objects are represented by data structures. A UML
diagram for this is presented in figure 4.1

instantiate: Object * (Parameters *)

id: int
name: char *

destroy: void (Object *)

struct Class

name:
type:
valueInteger:
valueString:

char *
enum { INTEGER, STRING }
int
char *

struct Property

name: char *

call: void (Object *, Parameters *)

struct Method

oid:
client:

int
struct Client *

struct Object

struct Signal

name: char *

*

1

super

1

methods

*

signals

*

1

properties

1

*

1 *class

Figure 4.1: UML Diagram of the Object Model

19

20 CHAPTER 4. OBJECT MODEL

4.1 Classes

Each class has a name, an instantiate function, a destroy function, and an
array of method specifications. Each method specification consists of a mapping
from a string name to a function pointer. Each class also has a pointer to its
parent class, which may be NULL if the class has no parent.

Each class also has a unique numerical identifier in order to facilitate very
fast retrieval of a class. This is not necessarily the same across all instances of
the server, as they are assigned in order of discovery by the server. For this
reason, functions are provided to find the numerical identifier from the class
name.

4.2 Objects

Each object has a unique numerical identifier, a pointer to the client that it
belongs to, a pointer to the class that it is a concrete instance of, and an indexed
collection of its properties and signal subscriptions. An object instance may be
found from its numerical identifier.

4.3 Instantiation and Destruction

If the instantiate function pointer in the class is not NULL, then clients may
create instances of this object. Clients should call the destroy method when
they are finished with an object. When a client exits, all of its objects are
destroyed automatically.

4.4 Methods

A remotely invokable method is essentially a function with the signature:

void method (struct Object *object, struct Parameters *params);

The object is the object that the method is being invoked upon. If the method
is being invoked without an object (static methods in C++ and Java), then
this pointer is NULL. The params is a general purpose data type that allows the
storage and retrieval of an arbitrary number of input and output parameters,
which may be either strings or integers.

It might be possible at some point in the future to adapt method specifi-
cations to include type information about the parameters. Considering that
methods may take various types of parameters (i.e. they may be polymorphic),
and that well written methods should check the values that they receive anyway
since they are coming from clients which may be untrusted, it is sufficient for
now to require that methods check the parameters they receive for the correct
number and type. Also the use of the struct Parameters gives us another ad-
vantage: it can neatly encapsulate multiple return values and error conditions.

To invoke a method on an object, the concrete class of the object is found
by dereferencing the ‘class’ field of the object. The method table for this class
is then searched for the method name. If it is found, then the method is called
with the appropriate parameters. If it is not found, then the ‘super’ field of the

4.5. PROPERTIES 21

class is dereferenced to move up to the super-class and the process is repeated
until either the method is found, or a class with no super-class is reached. If
the method is not found, then an error is returned to the client.

4.5 Properties

A property is a mapping from a name to either a string or integer value, and
supports coercion from one type into another. Additionally, properties have
function pointers for functions to be called before they are read, or after they
are written to. These are known as get and set modifiers.

The set of properties an object has is indexed using a red-black tree to allow
fast, that is O(log2 n) access, insertion, and removal. Objects provide accessor
methods to directly access their properties.

4.6 Signals

A signal is specified by its name, which is a string. Currently, only the client that
owns an object may subscribe to its signals, and that subscription is represented
by the existence of the signal’s name in the object’s signal index.

In the future, it may be desirable to allow different clients, or perhaps even
other objects, to subscribe to the signals of an object. In this case, signals
will need to be changed so that they contain a list of actions that should be
performed when the signal is emitted.

A signal emission also includes a struct Parameters to carry any values
that are associated with the signal; for example, a slider widget may include
its updated value as a parameter to the “updated” signal. Objects provide a
convenience function to emit a signal.

4.7 Messages

The message layer for Y is a protocol for accessing Y server objects over a
system which uses message passing as its communication primitive. A message
is a contiguous block of data that may be sent from one process to another,
possibly over a network.

The Y message specification specifies the format of Y messages, and the
possible operations that may be performed by a message. The specification also
details how the message passing protocol may be implemented atop a stream
protocol, such as that of UNIX domain sockets, or TCP/IP.

4.8 Message Format

Each Y message begins with eight 32-bit big endian unsigned integers, which are
designated ‘to’, ‘from’, ‘cid’, ‘oid’, ‘op’, ‘meta’, ‘ext’ and ‘len’. This is followed
by ‘len’ bytes of data as the message body. The total message length is thus
‘len’ + 32 bytes.

The message fields are used as following:

22 CHAPTER 4. OBJECT MODEL

to cid oid

lenextmetaop

from

4 bytes

body len bytes

Figure 4.2: Message Format

‘to’ Indicates the ID of the client for which the message is in-
tended, or ‘0’ if the message is intended for the server.

‘from’ Indicates the ID of the client from which the message came.
The server will ensure that this value is correct.

‘cid’ Indicates the ID of the class of object for which this message
is destined, or ‘0’ if no class is involved.

‘oid’ Indicates the ID of the object for which this message is
destined, or ‘0’ if no object is involved.

‘op’ The operation code of this message. These are listed below.
‘meta’ Special information dependent upon which operation is

specified by the ‘op’ field.
‘ext’ Reserved for future use. Should always be initialised to ‘0’.
‘len’ The length of the body that follows.

The format of the message body depends on the operation. A common body
format is ‘delimited strings’. These are a sequence of one or more ASCII strings,
separated by the ASCII Field Separator (0x1C).

Currently defined operations are:

NO_OPERATION Performs no operation. Can be used for session keep-
alive messages.

ERROR Indicates an error condition to the client. The mes-
sage body contains delimited strings detailing the
precise error that occurred.

QUIT Indicates to the server that the client is quitting.
EVENT Communicates an emitted signal from the server to

the client. The body contains delimited strings indi-
cating the signal name and its parameters.

INVOKE_SPECIAL Invokes a special method on the server. The
body contains delimited strings indicating the spe-
cial component, method name and parameters for
the method invocation. The ‘meta’ field has its least
significant bit set if the method is expected to return
a value. See section 8.3 on page 40 for more details.

4.9. STREAM IMPLEMENTATION 23

SPECIAL_RETURNS Contains the return value of a special invocation.
FIND_CLASS Requests that the server find the ID of a class from

its name. The body of the message contains the class
name.

FOUND_CLASS Returns the ID of the requested class in the ‘cid’ field.
INSTANTIATE Requests that the server instantiates the class whose

ID is specified in the ‘cid’ field. The message body
contains delimited strings indicating the parameters
to the instantiation.

NEW_OBJECT Returns the new object ID in the ‘oid’ field.
INVOKE_METHOD Requests the server to invoke a method on the object

specified in the ‘oid’ field. The method name and its
parameters are given as delimited strings in the mes-
sage body. The ‘meta’ field has its least significant
bit set if the method is expected to return a value.

METHOD_RETURNS Contains the return values of a method invocation
as delimited strings.

GET_PROPERTY Requests the server to return the current property
value of the object specified in the ‘oid’ field. The
name of the property is given as the message body.

GOT_PROPERTY Contains the value of the requested property in the
body.

SET_PROPERTY Requests the server to set the property of the object
specified in the ‘oid’ field. The property name and
new value are specified as delimited strings in the
message body.

SUBSCRIBE_SIGNAL Requests the server to subscribe the client to a signal
of the object specified in the ‘oid’ field. The signal
name is given in the body of the message.

The message operation codes above 0x1000 are designated for special use by
objects to be used for transfer of other data such as bitmaps.

4.9 Stream Implementation

Implementation of message passing over a two way stream is a simple case of
serialising the message data as it is sent. Care must be taken to ensure that
messages are not interleaved by threads sharing a connection.

Speed improvements can be made by buffering multiple requests and sending
them as a single packet. However, the buffer must be flushed frequently in order
to avoid significant latency. It must also be flushed whenever the messaging
system tries to receive a message.

24 CHAPTER 4. OBJECT MODEL

Chapter 5

Widgets and Themes

The widget hierarchy forms the main part of the Y server, and is its chief
distinction from X. Rather than the X model, where widgets are implemented
by various client-side libraries, widgets in Y are server-based objects.

There are about 40 different types of widget that might possibly be imple-
mented, ranging from buttons to scrollbars to tree views. Since developing and
testing widgets takes a large amount of time, the initial implementation will
only include eight as a proof of concept.

5.1 Widget

The widget class is the super-class of all other widgets. It contains the general
properties and methods of all widgets.

Every widget contains a parent-relative position and size. The position is
parent relative to avoid updating all the child widgets whenever the parent
moves. This is particularly useful for moving windows, as they are buffered,
and so their children will not even require re-painting. Widgets also provide
methods for converting local co-ordinates to global (screen-based) co-ordinates
should that be necessary (for example to initiate pop-ups next to the widget).

Widgets also contain a set of size constraints, that is, their minimum, max-
imum and requested width and height. The widgets’ size calculation routines
guarantee that a widget will never be given a region less than their minimum
size unless there is no way that can be achieved, for example if the minimum size
is larger than the screen dimensions. The widget will also never be given more
size than its maximum size, and will be automatically padded by the containing
widget if there is too much space. In the absence of any other constraints, the
widget will be given its requested size. The requested size should be the min-
imum amount the widget requires to display all of its information usefully, for
example without scrolling, and no more.

For when the size constraints of a widget changes, the widget class also
provides functions for propagating these changes up the widget tree, and if nec-
essary rearranging the widgets. The widget changes its size constraint values,
and calls widgetReconfigure on its containing widget. This then recalculates
its size constraints, and calls widgetReconfigure on its container. This contin-
ues up the tree until either the top-most widget of the tree or a widget whose

25

26 CHAPTER 5. WIDGETS AND THEMES

constraints are not affected by the change is reached (for example a fixed layout
widget). This widget then calls widgetResize on its children, who then proceed
to resize their children according to the size that they have available.

Desktop

Label Label

Window

GridLayout

widgetReconfigure widgetResize

Some More Text that is Longer
Some Text

Some More Text
Some Text

Window Window

Figure 5.1: Widget Reconfiguration and Automatic Resize

For example: a window contains a grid layout with two labels one above
the other, both with centred text. The window is sized such that the labels
just fit within the window’s border. The client application changes the text
of one of the labels so it is now longer than it was before. The label recal-
culates its minimum width to be the minimum width of the text in the label,
then calls widgetReconfigure on the grid layout. The grid layout then re-
calculates its minimum width based on the maximum minimum width of its
children. Since this value is now larger, it calls widgetReconfigure on its con-
tainer, the window. The window adds the size of the window border to the
minimum width of the grid layout and sets this as its minimum width, and
calls widgetReconfigure on the desktop. The desktop’s minimum width is not
affected by the windows that it contains, so it simply resizes the window so that
its size constraints are satisfied, which in turn resizes the grid layout, which in
turn resizes both of its children. This is shown in figure 5.1.

5.2 Desktop

The desktop is designed to be the root widget for most window managers. It
represents a background, which is up to the desktop as to what it contains, and
a collection of overlapping windows in a mutable z-order.

Since the desktop is designed to be used by the window manager, it currently
provides no remote methods, properties or signals. It provides in-server func-
tions for adding a window, raising a window to the top of the z-order, removing
a window, and cycling through the windows that are on screen.

The desktop is, however, responsible for ensuring that windows that are
maximised fill the full available space, and that windows do not vanish off the
side of the screen when the desktop is resized, for example through a screen
resolution change.

It is intended that this class will be extended significantly in the future to
allow objects, such as icons, to be placed on the desktop background, and to
allow panels to be attached to the sides of the desktop in an intelligent manner.

5.3. WINDOW 27

5.3 Window

A window is the main widget that applications will use. When an application
starts, it creates a window object within which to pack all of its other widgets.
Windows themselves only allow one direct child widget; to pack more than one
widget inside a window, the application programmer must use an appropriate
layout widget, such at the grid layout widget detailed below.

Windows are heavily dependent upon the current theme for nearly all their
implementation details. This results in windows being highly themable in both
their look and behaviour, which will allow themes and window manager modules
that behave very differently from mainstream window managers to be built.

Windows maintain which of their child widgets are currently focused. This
allows keyboard input to be maintained from one window to a next. When
a window is deselected, it stores which child widget currently has the focus
internally. When the window is reselected, it restores that focus. This allows
the expected behaviour that when people switch back to a window they were
previously using they can continue where they left off.

Windows also handle interactive moving and resizing of themselves. This is
initiated by either the theme or window manager calling windowStartReshape,
and is concluded by calling windowStopReshape.

Windows currently implement setChild, setFocused and show remote
methods to allow the client to set the contained child widget, set the currently
focused widget, and show the window on the screen respectively. They also have
a title property which specifies their on-screen title.

The plan is to extend windows so that they have concepts about the type of
widgets that nearly all windows have associated with them, that is menu bars,
status bars and tool bars. This will allow the theme and window manager to
decide what should be done with these, rather than the application programmer.
This will allow the user to specify through theme selection whether they want
their menu bars and tool bars attached to the top of the screen, or embedded
within the border of the window.

5.4 Label

The label is probably the simplest widget. It has two remote properties: text
and alignment. It displays the text in the default theme font according to the
alignment. Current valid alignment values are "left", "center" and "right".
The default is left aligned. Text is centred vertically, although it might be
a good idea to add this as a property at some point in the future. Further
developments may include the ability to change the colour and font.

5.5 Canvas

The canvas allows simplistic rendering in terms of graphics primitives such as
lines and rectangles. To begin with, the canvas will only provide a few basic
remote methods to allow drawing simple primitives. More complex primitives,
such as ovals and arbitrary polygons can be added at a later date.

The canvas is double buffered, so the client may draw whatever it likes on
the back buffer, whilst the front buffer displays a consistent image to the user.

28 CHAPTER 5. WIDGETS AND THEMES

When the back buffer is complete, the client calls swapBuffers, and the buffers
are swapped and the widget re-rendered. This results in very smooth transitions
from one state to another, and there is no visible redraw of the sort that plagues
the canvases of many of the existing windowing systems.

Another problem that can be solved elegantly with this new design is that of
the interactive resize problem. Traditionally, interactive resizes were performed
with an ‘elastic band’ indicator, and only once the new size had been decided was
the canvas repainted at the new size. With the increase in computational power,
users have come to expect the more natural situation where window contents
are displayed whilst resizing. Unfortunately, where canvases are concerned,
this introduces a problem: each pixel of resizing generates a new “window has
resized” event which is sent to the application. This requires the applications
to be intelligent, and anticipate receiving a series of resize requests and merge
them into one event. Unfortunately, not all applications do this, and this leads
to the undesirable lagging behind effect seen when resizing applications such as
Netscape Navigator 4.

Y solves this problem by treating canvas resize notifications in a different
way. A client application is only notified once when a window resizes, but
it is not notified what that new size it. It must then request the new size
(for convenience, this can be bundled together with a “reset the canvas to the
background” request), and is then given the most up-to-date size. If the window
continues to resize after this point, the process is repeated. This results in only
one “resize” event notification being live at any one point, which solves the
interactive resize problem without any intelligent calculation on the part of the
client.

5.6 Button

Button widgets represent the usual command buttons on windows, such as “OK”
and “Cancel” buttons in dialog boxes. They have a ‘text’ property which
indicates the text that is displayed on them, and they emit a ‘clicked’ signal
when they are clicked on.

Buttons grab the mouse whilst they are being clicked so that the user may
cancel them by dragging off of them.

5.7 Checkbox

Checkboxes are the usual on/off toggle widget found in most GUIs. The ap-
pearance of the checked state depends on the theme, so it can be marked by a
pressed button, a ticked box, a box with a cross in, or anything else.

Checkboxes have a text label, which usually appears to the right of the
check area, and a ‘value’ property which indicates the current state as either
‘0’ (unchecked) or ‘1’ (checked).

5.8 Console

The console is a specialised widget designed particularly for the terminal em-
ulator, but may be used by anything that requires a console-like display. A

5.9. GRID LAYOUT 29

console is an array of characters, and is manipulated by setting attributes (such
as colour and style) and writing text strings to locations on the console specified
by their row and column. The console can also scroll selected rows of the screen
by a particular amount, or can clear a rectangle specified in terms of character
rows and columns.

The operations that the console has are designed to match closely with the
operations required by libiterm. This means the terminal emulator, which is
implemented using libiterm, can be implemented with the minimal effort.

5.9 Grid Layout

The grid layout is the sample layout widget in Y. Children can be placed at
particular grid locations, and be given widths and heights in terms of grid cells.
The grid layout then calculates the appropriate cell width and height and fits its
children to the grid. For now, the grid is homogeneous, in that all the column
widths are the same, and all the row heights are the same. In the future, it may
be a good idea to make the grid optionally heterogeneous, so that columns and
rows can be different sizes to better adapt to the sizing needs of the children.

30 CHAPTER 5. WIDGETS AND THEMES

Chapter 6

Graphics Rendering

The graphics rendering system incorporates the buffers, painters, renderers,
viewports and video drivers that convert the abstract representation of widgets
into concrete on-screen elements.

The central component of graphics rendering is the ‘screen’. The screen
contains the root widget and the collection of viewports. It is the screen’s
responsibility to tie the two together.

Desktop

Window Window

Button Label

Widgets

ScreenFramebuffer

Buffers

Figure 6.1: Initial Design of the Buffer System

The initial design for the Y buffer system involved the framebuffer main-
taining a tree of buffers. This tree would essentially mirror the structure of
the widget tree’s buffered widgets. The widgets would manipulate the buffers
through access procedures on the screen. This is detailed in figure 6.1.

In the initial prototype of Y, however, this design proved to have significant
problems. First, it became difficult to define a clean API that would allow
proper manipulation of the buffer tree from within the widget tree. At some
levels, for example that of the desktop widget, the buffer tree needs to maintain
an explicit and mutable z-ordering of the widgets.

Second, some widgets, like the canvas, require double buffering. Repeat-
edly inserting and removing a buffer from the buffer tree is messy and hence
undesirable.

The solution is to associate each buffer with the widget that it pertains to.

31

32 CHAPTER 6. GRAPHICS RENDERING

Desktop

Window Window

Button Label

Widgets

ScreenFramebuffer

Buffers

Renderer

Figure 6.2: Final Design of the Buffer System

In essence, the widget ‘owns’ the buffer. Instead of iterating over the buffer
tree, the framebuffer now creates a ‘Renderer’ visitor, and sends that to the
screen which then passes it over the widget tree. Widgets with buffers render
the appropriate buffer (if they have more than one) on to the renderer, and
widgets without buffers do nothing. This is illustrated in figure 6.2.

6.1 Painters

Before the buffer is useful, it must first be filled with image data. This is done
by a ‘painter’.

When a widget wants to update one of its buffers, it gets a painter from the
appropriate buffer. It can then use this painter to paint its own image on to the
buffer, and pass the painter to its children so that they may paint themselves
on to the buffer.

The painter contains some state information about the current drawing op-
erations, for example pen and fill colours, and provides some function pointers
which allow drawing operations whose implementation is buffer-specific to be
performed. The painter’s state may be saved on an internal stack, and then
restored at a later time. This allows child widgets to modify the painter as they
please, and then safely restore the painter to its original state before returning
it to the parent.

Painters also provide translation and clipping mechanisms. Parent widgets
can enforce the placement and size of a child widget by setting the painter’s
clipping rectangle and origin offset to be the same as the child widget’s geometry.
This process can be performed repeatedly, as it is expected to happen at each
level in the widget tree. The painter can also be interrogated as to whether its
clipping rectangle has entirely collapsed. This allows recursion to be stopped
early when it is discovered than any child widgets will not be able to repaint
because they have been clipped out by some ancestor.

The current painter implementation provides methods for clearing and draw-
ing rectangles, and for drawing lines. Specially optimised functions for drawing
horizontal and vertical lines are also provided. Functions are also provided for
drawing a bitmap of alpha values on to the buffer with the current pen colour

6.2. VIEWPORTS 33

and for rendering RGBA data directly. These two functions are useful for font
and icon painting.

6.2 Viewports

A viewport is the representation of one discrete rectangle of screen space. It
corresponds to either a physical or, in the case of remote desktop applications,
virtual monitor, and as such is associated with a video driver.

Note that some video drivers will be written for graphics adaptors which
have multi-head support, so any one video driver may have any number of
viewports associated with it. When a video driver module is loaded, it creates
a viewport for each and every physical or virtual monitor that it has attached,
and registers them with the screen. From this point, all interaction with the
video driver will be done through the viewport. Video drivers are generally
implemented in modules so that the appropriate one may be loaded into the
server.

Screen updates in Y are driven by the viewport. This is because the viewport
is the best component to know the appropriate refresh rate of the screen. Local
video hardware drivers will want to update at least sixty times a second. Remote
desktop drivers will almost certainly want to tailor their update rate to the
available bandwidth.

Every time some widget in the screen changes, a rectangle indicating the
area that changed is passed up the widget tree until it reaches the screen. The
screen then passes the rectangle on to every viewport which stores a copy of it.

When a viewport determines that it is time to update, it collects together
all these invalid rectangles and unions any rectangles that significantly overlap.
It then creates a ‘renderer’ for each rectangle, and passes this to the screen,
which passes it over the widget tree. This corresponds to the render part of the
paint-render cycle.

In order to reduce the amount of redrawing required, buffered widgets can
also store these invalid rectangles as they pass up the tree from their children.
They can then wait until they receive a ‘renderer’ from their parent before they
repaint their children on to their buffer. This causes some interleaving of the
paint-render cycle which noticeably improves performance.

6.3 Fonts

Font rendering in Y uses the FreeType library [10] to allow access to several
types of bitmap and outline fonts, particularly TrueType fonts.

FreeType only provides facilities for rastering characters and determining
characters’ geometries. The FreeType documentation gives examples on how to
convert this into string rendering routines.

Y will require extra functionality from its font rendering system, as it will
need to measure strings in order to determine widget sizes, and to correctly
centre strings on screen. Measuring a string is almost identical to painting the
string; the rasterised data is simply thrown away.

Text rasterisation, particularly from outline fonts, is a fairly computation-
ally expensive operation. Since most strings which are measured will be subse-

34 CHAPTER 6. GRAPHICS RENDERING

quently painted, Y employs a string caching scheme. When a string is measured
or painted, its rastered version is cached. If the string is then subsequently mea-
sured or painted again, the cache is used rather than re-rastering the string.

6.4 Renderers

Renderers are essentially tables of function pointers for video-driver specific
functions. The current renderer API is designed with two types of renderer
in mind. These are detailed below. As more video drivers are written and it
becomes more apparent what is required of a renderer, appropriate functions
can be added.

Software Renderers

Video drivers that have no form of hardware acceleration, or only accelerate
opaque block transfers use software renderers. The software renderer blends all
the data that it receives into an in-memory buffer that is the same size as the
invalid rectangle. Once the data has been fully blended together, the block of
data is transfered to the video driver so that it may copy it to the frame buffer.

Software renderers are the slowest, but most general type of renderer. A
software renderer is used for both the SDL and Linux framebuffer device video
drivers.

Accelerated Renderers

Graphics adapters that provide some kind of accelerated means of blending in-
memory RGBA data to the screen will use accelerated renderers. Accelerated
renderers pass the buffered data for each widget that is encountered directly
to the video driver, so that it may blend the data itself using the accelerated
method.

This method should be significantly faster than using software-based ren-
derers, but will require video drivers which know how to perform the blending
operation in hardware. Further, not all graphics adapters support blending data
in this manner. They will also have to use software renderers.

Chapter 7

Input

The two main input methods for Y will be the keyboard and a pointing device,
such as a mouse. Other input devices such as joysticks and graphics tablets
will not be supported initially by Y, though it should be simple for them to be
added in the future.

The Y server itself has no drivers for obtaining input events. Instead, it
provides an abstract API which loadable modules can send the input events to
by calling particular functions. This allows maximum flexibility for supporting
various types of keyboards and pointing devices.

7.1 Pointing Devices

There are two types of pointing devices: relative and absolute. Relative point-
ing devices, such as a mouse, give offsets that indicate how far the device has
moved since the last movement event. Absolute pointing devices, such as touch-
sensitive screens, give the location within the screen that the pointing device is
currently at.

In order to support both types of pointing device, Y provides two functions:

void pointerSetPosition (int x, int y);
void pointerMovePosition (int dx, int dy);

Both of these affect the same on-screen cursor, so it is possible to use both a
touch screen and a mouse on the same Y server.

Pointers may also have an arbitrary number of buttons. In order to handle
this, Y provides a function:

void pointerButtonChange (int button, int state);

which allows drivers to update the state of any button.
These events are passed immediately to the screen, which forwards them to

the root widget. It is then the responsibility of the containment widgets to pass
the events down through the containment hierarchy until the leaf widget that
the pointer event pertains to is reached.

Certain widgets will require notification of events outside their bounding
box for brief periods of time. This is usually associated with the user ‘grabbing’
the widget with the pointer button. The simplest example is when cancelling a

35

36 CHAPTER 7. INPUT

button press. If the user drags the pointer out of the button’s rectangle whilst
keeping the pointer button pressed, the button reverts to its ‘unpressed’ look
to indicate that the button press may be cancelled. The button widget will
therefore need to know about pointer movement events outside its bounding
box whilst the pointer button is pressed.

To facilitate this, Y provides two more functions:

void pointerGrab (struct Widget *);
void pointerRelease ();

The first causes the pointer events to be forwarded directly to the widget that
requested them rather than sending them to the screen. The second cancels the
previous grab and restores the sending of events to the screen.

A

B

C

D

Parent

B: pointerLeave
A: pointerLeave
C: pointerEnter
D: pointerEnter
D: pointerMove (x, y)y

x

Event Sequence

Figure 7.1: Pointer Enter and Leave Events

Within the widget hierarchy, it is desirable to have notification of when the
pointer enters or leaves a widget. This allows widgets to become highlighted
when the mouse hovers over them, which is useful for user feedback. Figure 7.1
shows an example of the events that we want to occur.

7.2 Keyboards

Similar to pointer devices, keyboard input is obtained by appropriate driver
modules. The module passes keyboard input to Y itself by means of two func-
tions:

void keyboardKeyDown (enum KeyCode code);
void keyboardKeyUp (enum KeyCode code);

The KeyCode enumeration contains codes for any key that may appear on any
keyboard.

Unlike pointer events, keyboard events do not have an associated position,
and so it makes little sense to try and send them through the widget hierarchy.

Instead, there are two functions:

void keyboardSetFocus (struct Widget *);
void keyboardRemoveFocus (struct Widget *);

which set and remove which widget is currently focused. Focus can be set either
by mouse clicks on to certain widgets, or by certain key presses.

7.3. KEYMAPS 37

The only exception to this rule is keyboard shortcuts which correspond to
special window manager commands. These are those that cycle through win-
dows, switch workspace, or close a window. For increased consistency, Y spec-
ifies that one modifier set be assigned to window manager functions. For the
current implementation, I am using the left and right ‘Windows’ keys.

Upon pressing either window manager key, the window manager is notified
that its modifier is pressed. From this point, all keyboard input is directed to
the window manager module, rather than to the focused widget. When the
window manager key is released, it is again notified of this, and all further input
is directed to the currently focused widget.

7.3 Keymaps

Additional problems are caused by the fact that the mapping from key to symbol
varies from keyboard to keyboard, especially with respect to modified symbols.

For this reason, Y will provide a keymap system where keymap specifications
which translate a keyboard key into a key symbol can be loaded into the server.
For example, a keymap entry which binds the shift and control-alt states of the
“4” key (keycode 52) to “$” (36) and “¤” (164) respectively looks like:

keycode 52 = SHIFT(36), CTRL ALT(164)

38 CHAPTER 7. INPUT

Chapter 8

Miscellanea

8.1 Abstract Data Types

The Y server will require abstract data types for:

• Lists of data. These should be implemented as a doubly-linked list with
references to both the start and the end node stored in the list header. It
should be possible to iterate quickly over the list in both directions.

• Priority queues of data. These should also be linked lists, but the con-
tents should be stored in a sequence defined by some comparison function
provided to the queue at initialisation time.

• Explicitly ordered data. These should be similar to linked lists, but
allow several methods of re-ordering the elements within the list; in par-
ticular moving elements up or down by one position, promoting elements
to the top of the order, or demoting elements to the bottom of the order.

• Indices of data. These should provide fast look up of data based on a
key, plus fast insertion and deletion. Indices can be implemented using
any type of balanced tree, such as an AVL tree or a Red-Black tree. The
current implementation uses a Red-Black tree implementation based on
the one in GNU libavl [18].

8.2 Configuration

Configuration details are taken from a configuration file. The default location
of this file is in the etc/Y directory inside the installation prefix. The default
configuration file is named default.conf.

A different configuration file may be set by either setting the YCONFIGFILE
environment variable to the full path of the configuration file, or by passing the
--config=/path/to/file.conf option at Y start-up.

The configuration file is formatted as a sequence of commands to be passed
to the various Y components. An example Y configuration file might be:

module load "theme/basic"
module load "wm/default"

39

40 CHAPTER 8. MISCELLANEA

module load "driver/video/fbdev" mode=1152x864-85
module load "driver/ipc/unix" socket=/tmp/.Y-0
module load "driver/ipc/tcp" port=8900
keymap load "gb"

8.3 Special Functions

Certain parts that are normally internal to Y will want to expose some sort of
interface to clients for configuration and information reporting. The ‘special’
function interface provides a canonical way to do this.

Each part of Y that wishes to expose a special interface registers itself with
the special interface index, providing a string name and a function pointer for
a handler.

When a client sends a message of type INVOKE_SPECIAL, the appropriate
special handler is sought, and if found the rest of the parameters are passed on
to the handler. The handler may return some results if it wants to, and these
are passed back to the client if they were requested.

The best example for this is that of viewports and their resolutions. View-
ports will want to expose some interface to the clients so that clients can change
screen resolution. However, since the clients cannot instantiate viewports, there
is little point in them being full-blown remote objects.

Instead, the screen registers a ‘viewport’ special. The handler that is asso-
ciated with this accepts two possible inputs. The string ‘list’ causes it to send
back a list of the current viewports along with their numeric IDs. An integer
that is a valid viewport ID causes it to pass the remainder of the parameters on
to the viewport itself.

The viewport’s handler allows the client to either ‘listResolutions’ to ob-
tain a list of valid resolution settings, or ‘setResolution’ to change the view-
port’s resolution to a new setting.

Chapter 9

Clients

Clients communicate with Y using messages over some kind of socket-based
stream, such as UNIX domain sockets, or TCP/IP. See section 4.7 for details
on how the messaging system works.

Of course, application developers will not want to continuously construct,
send, receive and interpret messages in order to write graphical applications.
For this reason, client libraries for Y will need to be built.

9.1 Client Library Specifications

A client library must provide:

• A means for client applications to establish a connection to a Y server
based on a server identification string. Server identification strings are of
the form <protocol>:<address>. The format of the address part depends
on the protocol. For UNIX domain sockets, the protocol is unix and the
address is the path of the socket. For TCP/IP sockets, the protocol is
tcp and the address is the host name or IP address of the host to connect
to, followed optionally by a colon and port number. If the port number is
omitted, it defaults to 8900, the default Y TCP/IP port.

• A means of querying the server for classes. Applications should be able
to query whether certain classes exist, as this will form the basis of Y’s
extensibility.

• A means of sending special requests and receiving the replies. This will
allow clients to perform special operations, such as changing viewport
resolution. See section 8.3 for more details.

• Skeleton classes for each of the classes in the server that the client library
knows about. A skeleton class provides the same interface as the remote
class, and forwards all requests to the remote class. Client libraries can
take advantage of the special features of some languages. For example, if
a language supports get and set modifiers, then the client library can use
these for object properties. If it does not, then these can be supported
using the traditional getProperty and setProperty style methods.

41

42 CHAPTER 9. CLIENTS

• A main loop. Most GUI applications are callback based. This means that
when an application has initialised itself, it passes execution control over
to the client library. The client library then waits for events from the GUI
server and calls callbacks when they occur. The main loop should be able
to allow the client to listen on other file descriptors as well as the server
connection, and to trigger events after a short delay.

9.2 The C++ Client Library

For this project a client library for C++ has been built. To make it easier to
write client libraries, the C++ library is split into two halves: libY and libYc++.
LibY is written in C and provides generic functions to construct, send, receive
and deconstruct messages, as well as establish a connection to the appropriate
Y server over the appropriate protocol. This library can also be used by any
other language binding for which interfacing to C libraries is simple.

9.3 Example Applications

This project delivers four sample applications, plus a rudimentary control ap-
plication ‘yctl’

ysample

This is a basic sample application intended to show off Y’s standard widgets,
and provide an example from which new Y developers can learn. It simply
creates a window and packs a label, button and checkbox inside it.

yclock

The clock is based on a canvas. Once per second, it re-draws a representation
of an analogue clock onto the canvas.

9.3. EXAMPLE APPLICATIONS 43

ycalculator

The calculator is a simple stack-based calculator that uses button widgets for
buttons and a label to display the result. The calculator is not particularly
complex, and whilst capable of performing any simple calculation, it is not
particularly robust with respect to erroneous entries.

yiterm

The terminal is based on libiterm [26] by Jiro Sekiba, which provides a simple
API to a generalised terminal emulator. The Y terminal emulator program
simply creates a console widget and an instance of an iterm VT and connects
the two together.

yctl

This small program provides a direct command line interface to the special
interfaces in Y. It is intended as a development aid, as the final version of Y will
have a graphical control centre which enables configuration of all the aspects of
the Y server graphically. Since Y does not yet have a full set of widgets, it is
not possible to start writing the control centre yet.

The yctl program simply passes its command line arguments along to the
Y server as though they were a special request. This means the resolution of
the first viewport, for example, can be changed from the command line using:

yctl viewport 0 setresolution 1024x768-60

44 CHAPTER 9. CLIENTS

Chapter 10

Conclusions

10.1 Evaluation

The aims of this project were to:

• Design the framework for a successor to the X windowing system;

• Implement the beginnings of this framework, up to the point where a few
sample applications, such as a clock, calculator and terminal emulator can
be built;

• Support all the useful features of X, in particular its network transparency
and extensibility; and

• Improve on X, and enable extra features like widget buffering, alpha trans-
parency, and desktop resizing.

These goals have been mostly achieved.
Certainly the project has delivered a simple yet powerful design for a very

extensible window system and associated communication principles. By adding
to the server a concept of GUI widgets, several improvements are made. First, all
applications are forced to use the same set of widgets. This makes all widgets
look and behave the same. It also opens up more possibilities in the realms
of accessibility and internationalisation than the myriad of toolkits that were
available for X. Second, the weight of the communication protocol between the
client and the server is significantly reduced. Instead of the client repeatedly
sending the hundred-or-so instructions it takes to draw a button in its various
states, it simply requests a button object at a particular location; the server
does the rest.

The implementation of the simple server is as complete as was expected.
There is a complete object system which can be accessed remotely over a vari-
ety of mechanisms. The object system is language independent, and does not
depend on any specific features of any language. The server is modular, and
modules can be unloaded and reloaded at run-time with no adverse effects on the
server. Support for advanced features such as multiple monitors and hardware
acceleration has been considered in the design. With a small programming team
filling in the few missing parts, a deployable version of Y could be produced in
a matter of weeks.

45

46 CHAPTER 10. CONCLUSIONS

Extensibility is at least as good as that in X. The Y protocol is nearly in-
finitely extensible, as any new extension that requires client communication can
use an object class if it needs to hold data for clients, or a special interface if it
does not. Modularity is significantly improved over existing X implementations
as code can be safely unloaded from and reloaded into the server. This has
important ramifications, as it may be possible to change graphics card driver
version on-the-fly, or dynamically load a VNC server module to allow connection
to the Y display from a remote machine.

Y also provides widget buffering, removing the need for client redraw, and
enabling alpha transparency. By starting afresh, Y is able to provide desktop
resizing (and potentially rotation) and other modern features without breaking
anything else.

As it stands, Y still suffers from the same configuration problems that plague
X. Y configuration is specified by a text file, and whilst this is the UNIX standard
and is very useful for system administrators, it poses difficulty for the home
desktop user. Ideally Y should manage its own configuration file, automatically
detecting what hardware is available and setting sensible default values, but as
yet it does not do this. It could also integrate with some other configuration
system that allows users to set settings for all their applications. As yet, no
such system exists in a usable form. This is definitely an area for improvement.

The current Y implementation is in no way tweaked for performance. In
order to get the best out of stream based I/O, as much data should be sent in
one go as is possible. Though it would not be hard to add into Y, the current
implementation still sends data in small blocks. In particular, each Y message
is sent in two separate parts: the header and the body. Improving this may
improve Y’s performance significantly.

Despite this, Y’s network transparency is an order of magnitude faster than
X’s. Applications that are run on a local network are almost indistinguishable
from applications on the local machine. Further, applications can now success-
fully be run on a machine that is some distance away over the Internet. For
example, I have successfully run and used the calculator and clock examples
on a Y display in the Computing lab at Imperial College in South Kensington,
from my home computer in Ealing some 5 miles away, connected via ADSL to
the Internet. The latency is comparable to the latency experienced when using
X applications over a local area network. The network traffic caused by a simple
Y application is negligible.

Y has no security model, and currently anyone can connect to any running
server and display applications. Clearly this is undesirable. It is also undesirable
to have a complex authentication system ‘bolted on’ to the Y server like the
MIT_MAGIC_COOKIE system is to X. It is recommended that this issue is addressed
before any release of Y is made.

In comparison to X, Y is a significant improvement. Since all widgets are
implemented in the server, latency will always be minimal, even if the applica-
tion itself has a high latency connection to the display server. Further, there is
now a standard widget set which is fully themable, and more efficient to use.

Y’s API is considerably simpler to use than X’s. A simple application to
open a window and close it when the user clicks the close gadget is given in
appendix C on page 59. A comparable Xlib program would require almost two
hundred lines to create establish the connection, create the GCs, create the
window, map the window, enter an event dispatch loop, listen for expose events

10.2. TESTING 47

in order to draw the window’s contents, and listen for the close request.
Refer to appendix C for the API documentation of the C++ client library.
By breaking clean from the X protocol and the current X implementations, Y

has a clean design created using modern software engineering techniques. This
makes it much easier to understand, maintain and modify. All of the problems
that were associated with X can be solved with Y with relative ease, if they
have not already been solved.

In comparison to Windows and MacOS X, Y is a capable competitor. Y
is capable of eventually providing all the functionality that users of these two
windowing systems expect. It will be as consistent as MacOS and as configurable
as Windows.

In comparison to Fresco, Y is a better successor to X. Y is noticeably faster
than Fresco, probably due to its simpler architecture. Y is less dependent on
other software, such as CORBA ORBs and abstraction libraries. Y is easier to
write applications for as it does not require learning the CORBA IDL, and the
CORBA interface for your language of choice. Finally, Y is just as extensible
as Fresco, as both allow dynamic loading of code into the server.

10.2 Testing

There are a variety of tests that can be performed on Y to test the various facets
of its functionality.

Unit Testing

All the abstract data types used in Y are automatically tested by running
‘make check’. These automated tests create instances of the data structures,
then perform thousands of random operations on them, checking that they
maintain data integrity.

Further, the automated tests include some regression tests for the few bugs
that were found in the implementations.

It might be desirable to extend the unit tests to incorporate other core
features of the Y server, such as the object system. This might be hard to do
in practice.

Usability Testing

In its current state, Y does not have enough features for useful usability testing
to begin. Once more complex widgets have been created, it will be important
to begin usability testing.

Performance Testing

Due to the current implementation not using hardware acceleration, Y’s perfor-
mance is not as good as it could be. It is still perfectly usable, but there is some
noticeable slow down, particularly when blending large windows to the display.

Profiling the server using the GNU gprof program shows that the server is
spending 84.69% of its running time in the swrendererBlitRGBAData function,
that is the function that alpha-blends the buffered data to the display. This

48 CHAPTER 10. CONCLUSIONS

function can be entirely accelerated on supported hardware if suitable device
drivers are written.

Y’s performance really shines when applications are run over a network. The
table below compares some figures for starting and using the Y calculator, the X
calculator and the GNOME calculator. Operations are stop-watch timed from
the moment the request was made to the moment when the screen had finished
updating. Each operation was performed five times, and the mean time was
taken. The results are presented in table 10.1

Operation Y X GNOME
Local Machine

Starting 0.1 s 0.1 s 0.3 s
Resizing < 0.1 s 0.1 s 0.1 s
Moving < 0.1 s < 0.1 s < 0.1 s
Exposing < 0.1 s < 0.1 s < 0.1 s
Clicking a button < 0.1 s < 0.1 s < 0.1 s

100 Mbps Network
Starting 0.6 s 0.3 s 0.3 s
Resizing < 0.1 s 0.1 s 0.3 s
Moving < 0.1 s < 0.1 s < 0.1 s
Exposing < 0.1 s 0.1 s 0.1 s
Clicking a button < 0.1 s < 0.1 s < 0.1 s

512 kbps Connection to the Internet
Starting 2.2 s 3.8 s 21.1 s
Resizing < 0.1 s 2.1 s 20.4 s
Moving < 0.1 s < 0.1 s < 0.1 s
Exposing < 0.1 s 0.5 s 24.2 s
Clicking a button 0.3 s 0.5 s 1.4 s

Table 10.1: Comparative latency over different network speeds

It can be seen that Y is faster than X and GNOME in nearly all instances.
The main bottleneck is in starting an application. Currently, a round trip
must be made for every widget that is instantiated. This, coupled with the
inefficiency of the current socket implementation, makes start up times slower
than they need be. A solution to this is presented in the future work section
below.

10.3 Future Work

The intention of this project was to produce a foundation for the successor to
X. As a result, there are many ways in which Y can be extended and improved.
Some of these are listed below, but there will be many more.

Security

Y needs some form of security to allow only permitted users to make connections
to the display. The security system should be easier to use than the current X
authentication model, which confuses even expert users of X.

10.3. FUTURE WORK 49

There are two possible ways to implement this. The server could create a
certificate file when it starts or when the user logs in. When the user wants to
use the same display from a different machine, he or she will copy the certificate
file to an appropriate place on that machine. The client library and server will
automatically negotiate certificates to try and find the appropriate one. Also, if
the user wants to allow another user to access the server, he or she could send
that user a copy of the certificate to use.

Alternatively, Y could maintain a persistent trust database, similar to that
of SSH. When the server start up, it loads a key-ring from a file in the users
home directory. When any application starts up, it must negotiate with the
server in order to prove that it may access the server.

Additional Widgets

Y has only eight of the forty-something widgets that are present in most toolkits.
Implementing these will be a priority, as many applications will depend on them.

Applications

Once the widget set is rich enough, work can begin writing or porting applica-
tions for Y. Further, cross-platform toolkits, such as wxWindows, Qt, or SWT
can be implemented on Y to allow many existing applications to run.

Additional Client Libraries

In order to support as many languages as possible, appropriate class libraries
for those languages can be written.

3D Rendering

An interface to OpenGL should be built which allows OpenGL applications to
run on Y. This is probably best implemented as a new widget which exposes a
GLCanvas. Initially software rendering should be implemented, though hard-
ware acceleration should be possible using the DRI framework used by X and
DirectFB.

Multimedia Playback

At the simplest level, multimedia playback can be achieved by providing a Me-
diaCanvas widget, which exposes a YUV buffer. Colourspace transformation
and scaling can then be implemented either in the server, or using hardware.

A better solution would be to provide a codec system within the server.
Client applications could then send the video data to the server in its com-
pressed form, and the server would automatically decode it and display it on a
MediaCanvas. This approach should solve the current problem on GNU/Linux
where there is no centralised repository of codecs. Because of this each applica-
tion uses its own codecs which can result in different applications being able to
play different types of file.

Further, a natural extension of the display server is to provide support for
sound. The need for this is evidenced by the existence of KDE’s MCOP protocol

50 CHAPTER 10. CONCLUSIONS

and the X consortium’s media application server. By handling audio as well as
video, the display server can synchronise the two correctly, as well as handle
any contention for the limited number of output channels that some audio cards
have.

Hardware Acceleration

Drivers for the many types of hardware will need to be written. Hardware that
supports alpha blending data from memory should be exploited to improve the
rendering speed. Hardware acceleration should also be tied in to 3D rendering
and multimedia playback.

Internationalisation

Once Y has a coherent set of widgets, internationalisation of those widgets can
begin. This can include support for extra keys on keyboards, complex input
method editors that work on all widgets in the same way, support for right-to-
left text, and perhaps even mirrored dialog boxes for right-to-left languages.

Automatic Configuration

Once proper device drivers are written, an automatic configuration system can
be created. This would probe the hardware on initial startup and determine
what is available. Recent graphics cards and LCD monitors also have the ability
to suggest what the recommended resolution of the display is, and Y should take
advantage of this.

Legacy X Protocol Handler

In order to support the wealth of X applications that already exist, and to ease
the transition from X to Y, an interpretation layer will need to be built.

This is an excellent example of the elegance of the design of Y. The X layer
can be implemented as an in-server driver module. This module would, upon
initialisation, create an appropriate socket to pretend to act as an X server.
When X applications connect to this socket, the X module would translate the
requests into equivalent Y requests.

One drawback of supporting the X protocol is that many of the advantages
of Y, in particular the lightweight protocol and server-side objects, will be lost.

Remote Desktop Server

In order to allow access to an already running Y server from another location on
a network, it will be necessary to implement a remote desktop server within Y.
This could be implemented as a video driver, as this will provide the framework
that is needed.

For greatest portability, it would be best to implement a well known remote
desktop protocol, such as that used by VNC [28]. This will allow a VNC client
on any windowing system to connect to any Y server with this module loaded.

10.3. FUTURE WORK 51

Atomic Interface Building

In order to solve the problem of start-up latency, the interface building operation
needs to be made atomic, that is to make it possible to define an application’s
entire interface in one server round-trip.

A suggestion for this is to enable client applications to provide a high level
description of their interface in something like XML. This description would
contain details of how objects are packed into the layout widgets, plus default
settings for the objects properties. An example XML fragment might look like:

<?xml version="1.0"?>
<y:window name="sample" id="0">

<y:gridlayout id="1">
<y:gridlayout:child attach="0,0" size="2,1">

<y:label id="2" text="Testing" />
</y:gridlayout:child>
<y:gridlayout:child attach="0,1">

<y:button id="3" text="OK" />
</y:gridlayout:child>
<y:gridlayout:child attach="1,1">

<y:button id="4" text="Cancel" />
</y:gridlayout:child>

</y:gridlayout>
</y:window>

The Y server would respond with a mapping from the requested ids to the
real ids of the created widgets.

An approach similar to this can be seen in DialoX [8].

Session Suspension and Transportation

Session suspension is the ability to serialise an applications state back to the
client library, suspending the application, and restore it back to the server at
a later date. Session Transportation is moving an application’s server objects
from one server to another.

Essentially these are same thing, as transportation is equivalent to suspend-
ing the session, and resuming it on a different server immediately.

This could be implemented by offering two new operations. The first would
return a representation of all the clients objects to the client. The second takes
this representation and restores the clients objects from them. Since the IDs
may have changed, the server will need to return a mapping from old ID to new
ID. If the serialised form is the same as the XML form described above, these
two operations could be merged.

52 CHAPTER 10. CONCLUSIONS

Appendix A

Source Code

A.1 Obtaining the Source

Y uses the Arch revision control system by Tom Lord. Users of Arch can obtain
the latest revision by getting Y--main from:

mbt99@doc.ic.ac.uk--archive
http://www.doc.ic.ac.uk/~mbt99/{arch}/

Arch is Free Software, and can be downloaded from

http://regexps.srparish.net/.

Alternatively, a recent distribution tar archive of Y can be found at

http://www.doc.ic.ac.uk/˜mbt99/Y/.

A.2 Build Pre-requisites

Y is dependent upon:

• Linux kernel 2.4. Note that the radeonfb driver in the 2.4 series has a bug
which affects some ATI Radeon cards.

• SDL 1.2.

• FreeType 2.1.3.

• SigC++ 1.0.

• Iterm 0.5. A patch to Iterm is needed to enable the home, end, page up,
page down, insert and delete keys. The next version of Iterm will have
these included.

A.3 Compiling and Running

Y uses the GNU Autotools, and so can be built using:

53

54 APPENDIX A. SOURCE CODE

tar xfz Y-0.1.tar.gz
cd Y-0.1
mkdir build
cd build
../configure --prefix=/path/to/installation/directory
make
make install

Default configuration files will be installed to etc/Y in the installation di-
rectory. These may need to be modified. Note that Y must be installed prior
to use as it must be able to find its plug-ins and configuration files.

To start the Y server, run startY. This will start the Y server and a terminal
emulator. Further applications can be run from this terminal.

Appendix B

Terminology

B.1 Network Transparency

Application
2

Host A

Application
1

Display
Server

2

Application
3

Host S

1
3

Figure B.1: Normal operation versus network transparency

In normal operation, applications connect to a display server that is on the
same host as they are. There are many different communication primitives that
applications can use in this situation, in particular shared memory.

An application can also be run on a remote host, and be adapted such that it
makes its display connection to a display server running on another host. This
is illustrated with Application 3 in figure B.1.

Network Transparency is when this is done automatically without any as-
sistance from the programmer of the application, and with minimal assistance
from the user (i.e. the user need only identify the display server they wish to
connect to).

Of course, when operating over a network the communication primitives are
severely limited, so things like shared memory must be emulated by the client
library and server.

B.2 Remote Desktop Access

An entirely different situation is that of remote desktop access, as illustrated in
figure B.2. Here, a client running on another machine (for example, a VNC [28]

55

56 APPENDIX B. TERMINOLOGY

Application
2

Host A

Application
1

Display
Server

Host C

Desktop
Client

2
1

1
2

Figure B.2: Remote desktop access

client), makes a special connection to the display server on another machine,
and replicates its display within a window on the client’s host.

Usually updates are sent in the form of rectangles of bitmap data, so at-
tention must be paid to compressing the data stream, which can end up being
fairly large.

B.3 Objects, Widgets and Gadgets

The names for the different types of object within window systems vary from
vendor to vendor. Y uses the following conventions, adapted from the popular
X toolkits GTK and Qt.

Objects are server-side objects to which the client ‘owns’ and therefore has
access to, and can encapsulate any data or behaviour that is necessary.

Widgets are the discrete graphical components on screen, such as buttons and
labels. Generally these are also ‘objects’, so that the client may create
and access them.

Gadgets are the sub-components of complex widgets. For example, a window
might have a close gadget and a maximise gadget; a drop-down list box
might have a drop-down button gadget. Generally, these will not be ‘ob-
jects’ and the client will manipulate them using members of the containing
widget.

Appendix C

LibYc++ API
Documentation

LibYc++ is the client library for writing Y applications in C++. The library
provides a collection of classes which mirror the objects that are available on
the server, allowing you to manipulate the server objects as though they were
ordinary C++ objects.

LibYc++ uses libSigC++ to provide loosely coupled signals. Please read
the libSigC++ documentation to find out more about how to use it.

The next few pages will give full documentation for each of the classes, along
with some examples of how to use them.

57

58 APPENDIX C. LIBYC++ API DOCUMENTATION

Y::Y

This class is the main Y class, as it provides methods for creating and manipu-
lating the connection to the Y server.

Members

static void initialise (int *argcp, char ***argvp)

Initialises the connection to the Y server. It will pull any pertinent options off
of the command line, modifying *argcp and *argvp in the process.

static void run ()

Enters the main loop, transferring execution to the library.

static void time (int msec)

Sets a timer that will expire in no less than msec milliseconds. When the timer
expires, the timer signal will be emitted.

static int findClassId (const char *className)

Queries the Y server to determine whether the class named className exists.
This will return its class identifier if it does exists, or 0 if it does not.

Signals

static SigC::Signal0〈void〉 timer

This signal will be emitted when the timer set by time expires.

59

Example

This example shows the bare minimum that any Y application will want to do.
It opens a window on the Y server, and sets its title.

#include <stdlib.h>
#include <Y/c++.h>

static void
closeApplication ()
{

exit (EXIT_SUCCESS);
}

int
main (int argc, char **argv)
{

Y::Y::initialise (&argc, &argv);

Y::Window *window = new Y::Window ();
window -> setProperty ("title", "Test Program");

window -> requestClose.connect (SigC::slot (&closeApplication));

window -> show ();

Y::Y::run ();
return EXIT_SUCCESS;

}

60 APPENDIX C. LIBYC++ API DOCUMENTATION

Y::Object

This class is the superclass of all server-based objects.

Members

static Object *find (int id)

Returns the object that has ID id, or NULL if that’s not found.

int getId () const

Returns the ID of the object.

void setProperty (const string &name, const string &value)

Sets the property name to the string value.

void setProperty (const string &name, int value)

Sets the property name to the integer value.

string getProperty (const string &name)

Returns the value of the property name coerced to a string.

void subscribeSignal (const string &name)

Subscribes this application to the signal specified by name. From now on, this
object will start getting events relating to this signal.

virtual void onEvent (const string &name, const vector〈string〉
¶ms)

This template method is called whenever a subscribed signal emission is received.
The name is the name of the signal, and the params are the parameters associated
with the signal.

Protected Members

void create (int classId)

Creates a server-side object with server class classId and associates this local
object with the new object. This should be called by the appropriate constructor
of the subclass.

vector〈string〉 invokeMethod (const string &nameAndParams, bool
expectReturn = true)

This function invokes a remote method on the server object. nameAndParams is
a pre-formatted string containing the method name and parameters separated
by ASCII ‘FS’ characters (0x1C).

61

Example. To call a method ‘foo’ with parameters ‘1’, ‘2’, ‘3’, use:

#include <sstream>
...

ostringstream ss;
ss << "foo" << Y::Y::sep << 1 <<

Y::Y::sep << 2 <<
Y::Y::sep << 3;

results = invokeMethod (ss.str ());
...

If expectReturn is true (the default), then the call is made synchronously
to the server, and any results are returned in a vector of strings.

62 APPENDIX C. LIBYC++ API DOCUMENTATION

Y::Window

This represents an application’s main window.

Constructor

Window ()

Creates a new Window. The window is not yet visible.

Properties

title

The title of the window.

Members

void show ()

Shows the window on the desktop.

void setChild (Y::Widget *widget)

Sets the window’s contained widget to widget.

void setFocused (Y::Widget *widget)

Focuses the child widget widget.

Signals

SigC::Signal0〈void〉 requestClose

This signal is emitted when the user clicks the close button. The application
should close unless there is good reason not to.

63

Y::GridLayout

This widget lays out its children in a homogeneous grid. The grid is automati-
cally sized to contain all of its children.

Constructor

GridLayout ()

Creates an empty GridLayout.

Members

void addWidget (Widget *widget, int x, int y, int w=1, int h=1)

Adds a child widget. The child is placed with its top left portion in the cell in
row y, column x, counting from (0, 0) at the top left. The child’s width is set
to w columns and h rows.

64 APPENDIX C. LIBYC++ API DOCUMENTATION

Y::Label

Constructor

Label ()

Creates an empty Label.

Properties

text

The text contents of the label.

alignment

The alignment of the text, one of "left", "center" or "right".

65

Y::Button

Constructor

Button ()

Creates an empty Button.

Properties

text

The text label of the button.

Signals

SigC::Signal0〈void〉 clicked

This signal is emitted whenever the button is clicked.

66 APPENDIX C. LIBYC++ API DOCUMENTATION

Y::CheckBox

The checkbox provides an on/off toggle switch.

Constructor

CheckBox ()

Creates an empty CheckBox.

Properties

text

The text label of the check box.

value

This is 1 if the check box is set, and 0 otherwise.

Signals

SigC::Signal1〈void, bool〉 clicked

This signal is emitted whenever the check box is clicked. The boolean contains
the new value of the checkbox.

67

Y::Canvas

The canvas provides a drawable region of the screen. The canvas is double
buffered, that means you draw to a “back” buffer, whilst a “front” buffer is
being shown to the user. When you have finished drawing the back buffer, call
swapBuffers to switch the two buffers and display what you have just drawn
to the user.

Constructor

Canvas ()

Creates an empty Canvas.

Properties

background

Specifies the background colour in RGBA.

Signals

SigC::Signal0〈void〉 resize

This signal is emitted once when the canvas is resized. You must call reset in
order to find out the new size. You will not receive any more resize notifications
until you call reset.

Members

void savePainterState ()

Saves the painter’s state (blend mode, pen colour and fill colour).

void restorePainterState ()

Restores the corresponding saved state.

void setPenColour (uint32 t)

Sets the pen colour to the RGBA colour specified.

void setFillColour (uint32 t)

Sets the fill colour to the RGBA colour specified.

Example. To set the pen colour to opaque red, and the fill colour to 50%
transparent white, use:

canvas -> setPenColour (0xFF0000FF);
canvas -> setFillColour (0xFFFFFF80);

68 APPENDIX C. LIBYC++ API DOCUMENTATION

void reset (int &newWidth, int &newHeight)

Clears the canvas to its background colour and returns the size of the canvas in
the newWidth and newHeight variables.

void clearRectangle (int x, int y, int w, int h)

Clears the rectangle specified to the fill colour.

void drawRectangle (int x, int y, int w, int h)

Draws the rectangle specified in the fill colour, with an outline in the pen colour.

void drawHLine (int x, int y, int dx)

Draws a horizontal line starting at (x, y) extending for dx pixels to the right in
the pen colour.

void drawVLine (int x, int y, int dy)

Draws a vertical line starting at (x, y) extending for dy pixels down in the pen
colour.

void drawLine (int x, int y, int dx, int dy)

Draws the line specified in the pen colour.

void drawHLines (int n, . . .)

Draws a series of n horizontal lines in the pen colour, specified by the groups of
three parameters that follow.

void drawVLines (int n, . . .)

Draws a series of n vertical lines in the pen colour, specified by the groups of
three parameters that follow.

void drawLines (int n, . . .)

Draws a series of n lines in the pen colour, specified by the groups of four
parameters that follow.

Example. To draw a triangle in one operation, use:

canvas -> drawLines (3, 0, 0, 100, 0,
100, 0, -50, 75,
50, 75, -50, -75);

void swapBuffers ()

Swap the back and front buffers.

Bibliography

[1] Apple Computer, Inc. Aqua human interface guidelines.
http://developer.apple.com/techpubs/.

[2] AtheOS. http://www.atheos.cx/.

[3] Michael Babcock. The importance of the GUI in cross platform develop-
ment. In the Linux Journal,
http://www.linuxjournal.com/article.php?sid=2723, 1998.

[4] Vannevar Bush. As we may think, 1945.

[5] David Canfield Smith. Pygmalion, Watch What I Do: Programming by
Demonstration. The MIT Press, Cambridge, Massachusetts, 1993.

[6] Stuart J. Card, Thomas P. Moran, and Allen Newell. The Psychology of
Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale,
New Jersey, 1983.

[7] Daniel Caujolle-Bert and Günter Barsch. On the xine-devel mailing list.

[8] DialoX. http://www.nar.fujitsulabs.com/dialox/.

[9] DirectFB. http://www.directfb.org/.

[10] The FreeType project. http://www.freetype.org/.

[11] The Fresco project. http://www.fresco.org/.

[12] The GNOME project. http://www.gnome.org/.

[13] Beverly L. Harrison, Hiroshi Ishii, Kim J. Vicente, and William A. S. Bux-
ton. Transparent layered user interfaces: An evaluation of a display design.
In Proceedings of CHI’95: ACM Conference on Human Factors in Com-
puting Systems, pages 317–324, New York, 1995. ACM.

[14] Don Hopkins. The UNIX Haters Handbook, chapter 7, The X-Windows
Disaster. IDG Books, Programmers Press, 1994.

[15] The KDE project. http://www.kde.org/.

[16] Brad A. Myers. User interface software tools. ACM Transactions on
Computer-Human Interaction, 2:64–103, March 1995.

[17] Keith Packard. Translucent windows in X.

69

70 BIBLIOGRAPHY

[18] Ben Pfaff. GNU libavl. http://www.msu.edu/user/pfaffben/avl/.

[19] PicoGUI. http://www.picogui.org/.

[20] Thomas Porter and Tom Duff. Compositing digital images. ACM Trans-
actions on Computer Graphics, 18:253–259, July 1984.

[21] Qt/Embedded. http://www.trolltech.com/products/embedded/.

[22] Jef Raskin. The Humane Interface. Addison Wesley and ACM Press,
Reading, Massachusetts, 2000.

[23] Robert W. Scheifler and Jim Gettys. The X window system. ACM Trans-
actions on Graphics, 5(2), April 1986.

[24] Robert W. Scheifler, Jim Gettys, and Ron Newman. X Window System C
Library and Protocol Reference. Digital Press, 1988.

[25] Ben Schneiderman. Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, Reading, Massachusetts,
1998.

[26] Jiro Sekiba. Iterm.
http://oss.software.ibm.com/linux/projects/iterm/.

[27] Bjarne Stroustrup. The C++ Programming Language (Third Edition). Ad-
dison Wesley, Reading, Massachusetts.

[28] VNC. http://www.uk.research.att.com/vnc.

[29] The XFree86 project. http://www.xfree86.org/.

[30] The XMMS project. http://www.xmms.org/.

[31] Shumin Zhai, William Buxton, and Paul Milgram. The partial-occlusion
effect: Utilizing semitransparency in 3D human-computer interation. ACM
Transactions on Computer-Human Interaction, 3:254–284, 1996.

