
Zero Memory Widgets

LIRIS Research Report 20030311

THIERRY EXCOFFIER
Université Claude Bernard, Lyon 1

March 11, 2003

Abstract

Widget libraries have now been developped and used for years. In all these
libraries, widget instances require computer memory. But this memory is not
really required, We have implemented a widget library to prove that it is
possible to use zero bytes of memory per widget. In such a library, there is no
widget reference, so widget programming is easier even in a low level language
such as C. Programs are more robust because they do not use pointers, make
no memory management and do not translate data between application and
widget. To set the attributes of a widget, it is not possible to use the widget’s
pointer so a current state is used as in OpenGL. Most classic widgets were
integrated into the library, and it should be possible to integrate widgets of
all kinds without any problem.

Contents

1 Introduction 2

2 The classic widget libraries 2

3 How to use a Zero Memory Widget library 3
3.1 How it works . 3
3.2 “Hello World” program . 4
3.3 Containers or how to layout widgets 4
3.4 The data required are stored on the user’s side 4
3.5 Event handling . 5
3.6 Current state . 6
3.7 Widget class creation by composition 7
3.8 Base widget class creation . 8

4 Our implementation 9

5 Constraints of a Zero Memory Widget library 10
5.1 Program state modification . 11
5.2 Widget naming . 11
5.3 Seldom used widget data . 12

6 Conclusion 12

1

1 Introduction

This article shows how to use zero memory widgets (ZMW). Beside the fact that
they do not use memory in the user program nor in the windowing system (X11 or
Windows), ZMW are easy to use because there is: no pointer or reference on the
widget, no concept of widget creation or destruction, no memory leak, no function
to get or set widget data, no callback or event-handling functions.

In many applications, the widget tree reflects the application’s data. Hence
both data and structures are duplicated. It is a burden for the programmer to
synchronize these structures. This synchronization consumes computer memory
and time. With ZMW, this problem disappears, as the widget tree is virtually
created from the application’s data.

ZMW library is as powerful as any other widget library in terms of functionali-
ties. But it uses much more computer time for static GUIs than with classic widget
libraries, because data is computed and not stored. For highly dynamic GUIs, e.g.,
a tearable contextual menu hierarchy, ZMW library should be more efficient than
classic widget libraries, because of the absence of memory management.

After some words on classic widget libraries, we explain how a ZMW library
can work. Examples are given to highlight several functionalities such as widget
composition, event handling, attribute setting, class creation. The last part presents
usage constraints of a ZMW library and the conclusion.

2 The classic widget libraries

Widget library history is complex, only some samples are taken from this history
in the X11 world. More information may be found in papers on human-computer
interaction history [Mye98] or software tools [Mye95].

It is difficult to create widgets using only the X11 basic functions contained in
the Xlib. So the Intrinsic Library [ON92] was created in order to make the widget
creation process easier for the programmer. The most famous widget libraries based
upon the Intrinsic Library are Athena [Fla92] and Motif [HFB93]. As X11, the
Intrinsic Library is a complex piece of software because it is very generic. An
interesting fact is that windows may contain a patchwork of widgets created with
the Intrinsic Library, e.g., Athena and Motif widgets.

The Intrinsic Library is too powerful, and hence rather complex to use. Many
attempts have been made to make widgets libraries more usable by the program-
mers, so they can easily create new widget classes or compose GUIs. Some use a
low-level programming language like C, for example the GTK [GMtGt02] library.
Others rely heavily on an object-oriented language like C++, for example Amulet
[MMM+97] and Qt [Dal02].

In all those widget libraries, instances are created and the user manipulates
references in order to modify the widgets. This is done to optimize the time to
update the screen.

To receive events, the user must provide an event handler, the parameters of
which are defined by the widget library. Usually, one of the event handler’s pa-
rameters is a pointer to a user-defined data. If the user-defined data is an integer
or a data structure, there is no problem. But if two integers are needed, a new
data structure must be created, to only serve as a parameter to the event handler.
An exception is Amulet, because in this library event handlers are objects and not
functions, so there is no problem with parameters.

For all these reasons, widgets are fairly difficult to program. Many people use
GUI builders as Glade or wxWindows. With such builders, only handlers have to be
written. But GUI builders may only be used for static GUIs, in which the widget

2

tree is predefined and does not change when an application is running. So GUI
builders do not simplify programming applications where the widget trees depend
upon application data.

User interface description languages are an alternative to GUI builders. The
GUI description can be generated on the fly, so the interface may be dynamic.

There are other widget libraries that do not use references. The most used one
is the tandem HTML/JavaScript [ECM99]. The user defines the graphical interface
and how events are managed, without using references most of the time. This
approach seems to be very successful, as it is now used in most web pages. There is
some other interface language definition using XML/JavaScript such as Entity, or
XUL in Mozilla.

These approaches, mostly without references make programming easier, but they
have drawbacks: the user needs to learn a new language, and the implementation
is complex because two languages (HTML/JavaScript) are required to display and
interact with the web page.

Our ZMW library is based upon these ideas, but replaces HTML/JavaScript
with a classic programming language.

3 How to use a Zero Memory Widget library

The following examples show how it is possible to create an easy-to-use widget
library without: intermediate language, preprocessing, widget references, pointers,
computer memory.

The examples are in the C language but could be easily ported to any language.
The snapshots are taken from the ZMW library prototype.

The GDK library is used by ZMW as an interface to the windowing system.

3.1 How it works

The user provides a function whose execution traverses the widget tree. The action
performed on the widget depends upon a current state: it may be either computing
widget size, drawing on the window or analyzing an event.

This table shows a parallel between classic widget libraries and ZMW libraries.

Classic widget library Zero memory widget library
Class A class or a constructor A function
Creation Constructor call Not applicable
Destruction Destructor call Not applicable
Instance A data structure A call to the function
Display Widget display-method call Some calls to the function
Event Widget event-method call Some calls to the function
Size change Recompute widgets size Nothing to do

The users of the 3D graphic libraries PHIGS [ISO97a] and OpenGL [WND+99]
will recognize this opposition. In PHIGS, the library stores a 3D model to optimize
visualization. When the application updates the library’s 3D model, the display is
updated by the library without any user intervention. With OpenGL, by default,
the library does not store data. When the application updates its 3D model, it is
required to redraw the whole 3D model to update the display. PHIGS has always
been powerful but OpenGL is easier to use.

3

3.2 “Hello World” program

This program displays a label in a window.

#include "zmw.h"

void hello world(void)
{

static GdkWindow ∗w = NULL ;

ZMW(zmw window(&w))
{

zmw text("Hello World!") ;
}

}

int main(int argc, char ∗argv[])
{

zmw run(argc, argv, hello world) ;
return 0 ;

}

hello world is a C function, but for ZMW, it is a widget class. A function call is
a widget instance. In this example, hello world is the root of the widget hierarchy.
hello world is called by zmw run to compute size, draw on the screen and receive
events. The memory footprint of the program is unchanged by the hello world
call.

3.3 Containers or how to layout widgets

With a classic widget library, containers may be defined, as in GTK, by using a
function to modify the children list or, as in Motif, by specifying the parent of the
created widget. With ZMW both ways are impossible because there is no widget
data structure, so there is no memory, hence no pointers. The solution is, as in
HTML, to create a block of widgets. The parameter of ZMW specifies the layout and
the graphic aspect of the block’s contents.

void two widgets(void)
{

ZMW(zmw box vertical())
{

zmw text("Hello") ;
zmw text("World!") ;

}
}

3.4 The data required are stored on the user’s side

With a classic widget library, data is copied to the widget and must be retrieved
from the widget, so many functions are required to handle data. With ZMW, data
is used as provided by the program, without any memory allocation or copy. There
is no function to get or set the data.

4

void toggle list (void)
{

static int toggle state [5] = {0, 0, 1, 0, 0} ;
char toggle name[100] ;
int i ;

ZMW(zmw box vertical())
{

for(i=0; i<5; i++)
{

sprintf (toggle name, "Toggle %d", i) ;
zmw toggle with label(&toggle state[i], toggle name) ;

}
}

}

The argument of the toggle widget is the integer it displays and modifies. The
toggle state is stored in the application’s data structure and nowhere else.

A side-effect of this method is that two toggles may be synchronized by giving
them the same integer to modify.

A drawback of this method is that in some cases, a piece of data is required
by the widget, but not by the application. For example, the cursor position in an
editable text widget or a window pointer as in the hello world program. For such
cases, a resource system could be implemented to simplify user programs, this will
be mentioned later in the paper.

3.5 Event handling

In classic widget libraries, event handlers are connected to the widgets. As these
event handlers require a fixed set of parameters, they are cumbersome to use. An-
other problem is that they hamper program linearity because event-handling func-
tions should be written even if they are used only once and are as short as one line
of code. The following example is written with the GTK library and creates a quit
button.

void handler destroy(GtkWidget ∗widget, gpointer data)
{

printf ("END\n") ;
exit (0) ;

}
...
button = gtk button new with label("Quit");
gtk signal connect(GTK OBJECT(button), "clicked",

GTK SIGNAL FUNC(handler destroy), NULL);

With ZMW, such problems vanish. The action is defined after the widget, it
is executed if the widget receives the expected event. In the following example,
the function zmw activated returns true if a mouse button had been pressed and
released on the widget, and zmw tip visible returns true if the cursor was still
and over the widget for a short time.

5

zmw button("Quit") ;
if (exit allowed && zmw activated())

{
printf ("END\n") ;
exit (0) ;

}
if (zmw tip visible ())

{
ZMW(zmw window popup(&window tip))
{

zmw text("Quit the program") ;
}

}

The button may be activated by clicking the mouse, or if the button has the
focus, by pressing a key.

If exit allowed is false, the button is disabled and so displayed grayed. It is a
side-effect of the C language boolean evaluation method: if exit allowed is false,
the function zmw activated() is not called, so the ZMW library knows that the
button is not sensitive. In other languages, two “if” should be required.

The Quit the program message is a balloon tip. The tip is activated when the
cursor stays still for a while. The example opens a popup window, but it is possible
to open a normal window or even to insert the tip’s message after the “Quit” button
in the current window.

3.6 Current state

As there is no widget pointer or reference, using a state is an easy and powerful
way to give graphic attributes to widgets. There are functions to modify the state
contents as the alignment, the color, the font. When a widget is defined, its at-
tributes are those defined in the current state. This programming method has many
advantages: the functions have less parameters and global changes are easier.

ZMW(zmw box vertical())
{

zmw horizontal alignment(ZMW CENTER) ;
zmw foreground(ZMW BLUE) ;
zmw text("Blue") ;
ZMW(zmw box vertical())
{

zmw horizontal alignment(ZMW LEFT) ;
zmw text("Blue") ;
zmw foreground(ZMW RED) ;
zmw text("Red") ;
zmw foreground(ZMW GREEN) ;
zmw font("-*-utopia-bold-*-*-*-*-400-*-*-*-*-*-1") ;
zmw text("Green") ;

}
zmw horizontal alignment(ZMW RIGHT) ;
zmw text("Blue") ;

}

As for 3D graphic trees (VRML [ISO97b] for example), attributes are saved when
entering a node and restored when leaving it. So when an attribute is modified inside
a node, its value is not modified outside the subtree. In the example, the last text
color is blue and not green.

6

The ZMW library requires a stack of current states to handle the attributes of
the widgets. The memory required depends on the size of the state stack, which is
the depth of the widget tree.

In the Fresco widget library [LP93] there are widgets applying 3D transformation
to widget trees. From the user’s point of view, it seems there is a current 3D
transformation but it does not really exist in the library. In fact, each widget has a
3D transformation as attribute, and the widget is displayed with this attribute. If
a widget applying a 3D transformation is modified, its modification is propagated
wherever required to update the 3D transformation attributes.

3.7 Widget class creation by composition

Composing existing widgets is an easy way to create new widget classes. The fol-
lowing example is the composition of a toggle and a label. The toggle is the small
square and the label is the text to its right. The user can change the toggle state
by clicking on the rectangle containing both widgets.

void toggle with label(int ∗value , const char ∗label)
{

ZMW(zmw box horizontal())
{

zmw toggle(value) ;
zmw text(label) ;

}
if (zmw activated())
{
∗value = 1 − ∗value ;

}
}

In some cases, a user widget tree must be inserted into the widget composition.
For example a viewport with scrollbar may scroll any widget provided by the user.
The following code defines the widget class to display a message; the message can
be any widget tree, the message window has a title and a close button. A boolean
specifies if the message is visible.

7

/∗ Widget class: message ∗/

void zmw message(GdkWindow ∗∗w, Zmw Boolean ∗visible,
const char ∗title , const char ∗button name)

{
ZMW EXTERNAL RESTART ; /∗ An external widget will be used ∗/
if (∗ visible)

ZMW(zmw window(w, title))
{

ZMW(zmw box vertical())
{

ZMW EXTERNAL ; /∗ The external widget ∗/
zmw horizontal alignment(Zmw False) ;
zmw horizontal expand(Zmw False) ;
zmw button(button name) ; /∗ Button to close the message ∗/
if (zmw activated())
∗ visible = Zmw False ;

}
}

ZMW EXTERNAL STOP ; /∗ An external widget has been used ∗/
}

/∗ This code fragment displays the text widget “Any widget you want”
in the message window ∗/

static GdkWindow ∗message window=NULL ;
static Zmw Boolean visible = Zmw False ;
...
ZMW(zmw message(&message window, &visible, "My Message", "Close window"))
{

zmw text("Any widget you want") ;
}

3.8 Base widget class creation

The creation of a new type of widget is easy because there is neither memory
allocation nor complex data structures to initialize, such as in the Intrinsic Library.
The example below shows the definition of the horizontal box widget.

void zmw box horizontal(void)
{

switch(zmw action())
{

case Zmw Compute Required Size:
zmw box horizontal compute required size() ;
break ;

case Zmw Compute Children Allocated Size And Pre Drawing:
case Zmw Compute Children Allocated Size:

zmw box horizontal compute children allocated size() ;
break ;

case Zmw Init:
case Zmw Post Drawing:
case Zmw Event:

break ;
}

}

8

Modifying existing widget classes is straightforward. The following example is
the code of an enhanced box widget that draws a background.

void zmw my box horizontal(void)
{

if (zmw action() == Zmw Compute Children Allocated Size And Pre Drawing)
{

zmw my box draw background() ;
}

zmw box horizontal() ;
}

4 Our implementation

In our library, the action to perform when a widget is evaluated can be to compute
its required size, to display the widget, to dispatch the input event, to search accel-
erators, to display widget information in HTML, etc. The action is a function, so
the users may add their owns action.

Most of the actions require several steps. For example, to display a box, these
sub-actions must be evaluated:

• compute the required size of each child;

• compute the required size of the box;

• using the allocated box size, computes the children’s allocated size;

• display the box background;

• display each children;

• do some post drawing.

The sub-actions are those required to define a new widget class as in the two previous
code fragments.

The heart of the algorithm is the loop performing the sub-actions on the widget.
This loop is hidden in the ZMW C language macro. When the program contains the
following code fragment :

ZMW(zmw horizontal box())
{
...
}

It is translated as :

for(zmw init widget() ;
zmw horizontal box(),(∗ZMW ACTION)() ;
zmw state pop())
{
...
}

In the C language, the for construct contains three parts:

1. The initialisation: zmw init widget performs some initializations before “en-
tering” in the widget. Its main purpose is to set the loop counter to 0.

2. The end of loop test: The following functions use the loop counter to determine
their behavior.

9

• zmw horizontal box() perform the sub-action required by the widget,
in this case an horizontal box.

• (*ZMW ACTION)() This function computes the scheduling of the sub-
actions in order to perform the required action. In all the cases, this
function will increment the loop counter. When all the sub-actions are
done, it stops the loop. If the loop continues, it pushes the current
state and initializes the new state, in order to perform the action on the
children defined in the loop body.
The C implementation uses a function pointer stored in the current state.
It is useful in order to change the action while traversing the widget tree.
For example, on the first loop the draw action will become a compute
required size action for the children.

3. The “Increment”: zmw state pop() restores the current state. This insures
that the loop body will always start with the same current state.

The following table contains the execution trace of the drawing of a window
containing a box containing two labels A and B. To draw the window contents, it
is necessary to compute sizes, so the action is set to compute required size.

Widget name Sub-action Action Loop counter
Window Initialize draw 0

Box Initialize required size 0
Label A Initialize required size 0
Label A Required Size required size 1
Label B Initialize required size 0
Label B Required Size required size 1

Box Required Size required size 1
Window Allocated Size draw 1

Box Initialize draw 0
Label A Initialize required size 0
Label A Required Size required size 1
Label B Initialize required size 0
Label B Required Size required size 1

Box Allocated Size draw 1
Label A Initialize draw 0
Label A Allocated Size draw 1
Label A Post Drawing draw 2
Label B Initialize draw 0
Label B Allocated Size draw 1
Label B Post Drawing draw 2

Box Post Drawing draw 2
Window Post Drawing draw 2

The pre-drawing is done when computing allocated size sub-action. As the re-
quired size is not stored in the widget, it must be computed each time it is needed.
In this trace we can see that the label required sizes are computed twice.

5 Constraints of a Zero Memory Widget library

The programming interface to the ZMW is minimal. The library has no information
about widgets, which may lead to minor problems.

10

5.1 Program state modification

The function defining a widget must verify the following property in order to be
used successfully by ZMW:

Two successive calls to a widget must do exactly the same thing. The only
exception is when a widget receives an event, in which case the user program may
change its state.

This is required because the function will be called at least twice. The first time
to compute the widget size and the second one, to draw the widget. If the program
state changes between these two calls, the library does not know about the change
and the widget will be displayed incorrectly.

5.2 Widget naming

Widget naming is required to reference widgets. Referencing a widget is common,
to indicate, for example:

• the deepest pull-down menu displayed, if there is one;

• the widget with the focus;

• the widget being dragged.

The simplest way to obtain widget references is to name them as in all widget
libraries. If the user does not name the widgets, a default naming scheme is used:

ZZ~J
JĴ

HHHjC
C
C
C
C
C
C
CW

ZZ~J
JĴ

J
JĴ

C
C
C
C
C
CW

ZZ~

1

2

2
1

3

2
1

2
1

1

2

Widget tree Widget names

1/1
1/2
1/2/1
1/2/1
1/3

2/2
2/1

With a static GUI, the default naming scheme works, but with a highly dynamic
GUI, some problems arise. For example in the following code, the number of buttons
depends on the value of the variable display A, and the variable is modified while
the window is visible.

ZMW(zmw box vertical())
{

if (display A)
zwm button("A") ;

zwm button("B") ;
}

The default naming scheme will not work in the following sequence of events, in
which the focused widget changes without user action :

1. The display A variable is false.

2. The user clicks on “button B”, the button takes the focus, so the name of the
focused widget is .../1

3. The display A variable becomes true.

11

4. The “button A” name is .../1 so “button A” has the focus.

5. The “button B” name is .../2 so it is no more focused.

There is no automatic solution to this problem, because the library cannot
distinguish between widgets. The programmer must set the widget’s name in the
case of highly dynamic GUIs.

ZMW(zmw box vertical())
{

if (display A)
zwm button("A") ;

zmw name("B") ;
zmw button("B") ;

}

With this program, “B” is always named .../B and “A” is always named .../1
so there is no confusion.

5.3 Seldom used widget data

In most widget classes, some widget data is not useful to the programmer. The
window pointer (GdkWindow typed in the examples) is never used. The cursor
position in an editable text is rarely used. The program would be more readable
if those widget data were invisible to the programmer; so the widget must contain
some data when the application does not provide storage space.

The way to add these data in a no-memory widget library is to store the data
as a resource. As in classic widget libraries, a resource is a triple: (widget name,
attribute, value). The X11 resource xterm.vt100.background: black means that
the attribute background of the widget xterm.vt100 is set to black.

A ZMW library could use the same system to store the values that are not useful
to the user. The resources could be used as in other systems to allow the user to
configure the application’s appearance.

6 Conclusion

This paper shows that with ZMW it is possible to make widget programming easy
even in a language without a garbage collector such as C.

ZMW have another advantage: once the library API is defined, the widget
implementation may be swapped on the fly with no overhead, because there is no
widget instance. So it is straightforward to create themable widgets.

The examples given run with the library prototype. Readers interested in the
way to make a ZMW library may download the prototype from :
http://www710.univ-lyon1.fr/~exco/ZMW/

The implementation allows hierarchical tearable menus, drag and drop, scroll-
bars, viewports, selection handles, tips, notebook, accelerators, pictures, animations
and a minimal file browser.

The rendering is accelerated using a geometry cache. In the future OpenGL will
be used in place of GDK to display widget because its current graphical state is
more adapted to a ZMW library.

ZMW are now possible because current computers are powerful enough to dis-
play all the widgets in a very short amount of time. A lot of CPU time will be
wasted if a ZMW library is used to create a static GUI, in the other hand, it makes
application coding simple.

12

References

[Dal02] Matthias Kalle Dalheimer. Programming with Qt, 2nd Edition. Writing
Portable GUI applications on Unix and Win32. O’Reilly, 2002.

[ECM99] ECMA. Standard ecma-262: Ecmascript language specification.
ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf, 1999.

[Fla92] David Flanagan, editor. Volume 5: X Toolkit Intrinsics Reference Man-
ual. O’Reilly, 1992.

[GMtGt02] Tony Gale, Ian Main, and the GTK team. Gtk+ 2.0 tutorial.
http://www.gtk.org/tutorial/, 2002.

[HFB93] Dan Heller, Paula Ferguson, and David Brennan. Volume 6A: Motif
Programming Manual. O’Reilly, 1993.

[ISO97a] ISO. Programmer’s hierarchical interactive graphics system (PHIGS)
– part 1: Functional description, 1997.

[ISO97b] ISO. The virtual reality modeling language –
part 1: Functional specification and utf-8 encoding.
http://www.web3d.org/fs specifications.htm, 1997.

[LP93] M. Linton and C. Price. Building distributed user interfaces with fresco.
In Proceedings of the Seventh X Technical Conference, Boston, Mas-
sachusetts, pages 77–87, January 1993.

[MMM+97] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alan S.
Ferrency, Andrew Faulring, Bruce D. Kyle, Andrew Mickish, Alex
Klimovitski, and Patrick Doane. The amulet environment: New models
for effective user interface software development. IEEE Transactions
on Software Engineering, 23(6):347–365, June 1997.

[Mye95] Brad A. Myers. User interface software tools. ACM Transactions on
Computer-Human Interaction, 2(1):54–103, March 1995.

[Mye98] Brad A. Myers. A brief history of human-computer interaction technol-
ogy. ACM Transactions on Computer-Human Interaction, 5(2):44–54,
March 1998.

[ON92] Tim O’Reilly and Adrian Nye. Volume 4M: X Toolkit, Intrinsics Pro-
gramming Manual, Motif Edition. O’Reilly, 1992.

[WND+99] Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, and OpenGL
Architecture Review Board. OpenGL(R) Programming Guide: The Of-
ficial Guide to Learning OpenGL, Version 1.2. Addison-Wesley, 1999.

13

